
Securing the Device Drivers of Your Embedded Systems:
Framework and Prototype

Zhuohua Li
The Chinese University of Hong Kong

zhli@cse.cuhk.edu.hk

Jincheng Wang
The Chinese University of Hong Kong

jcwang@cse.cuhk.edu.hk

Mingshen Sun
Baidu X-Lab

sunmingshen@baidu.com

John C.S. Lui
The Chinese University of Hong Kong

cslui@cse.cuhk.edu.hk

ABSTRACT
Device drivers on Linux-powered embedded or IoT systems exe-
cute in kernel space thus must be fully trusted. Any fault in drivers
may significantly impact the whole system. However, third-party
embedded hardware manufacturers usually ship their proprietary
device drivers with their embedded devices. These out-of-tree de-
vice drivers are generally of poor quality because of a lack of code
audit. In this paper, we propose a new approach that helps third-
party developers to improve the reliability and safety of device dri-
vers without modifying the kernel: Rewriting device drivers in a
memory-safe programming language called Rust. Rust’s rigorous
languagemodel assists the device driver developers to detect many
security issues at compile time. We designed a framework to help
developers to quickly build device drivers in Rust. We also utilized
Rust’s security features to provide several useful infrastructures
for developers so that they can easily handle kernel memory allo-
cation and concurrency management, at the same time, some com-
mon bugs (e.g. use-after-free) can be alleviated. We demonstrate
the generality of our framework by implementing a real-world de-
vice driver on Raspberry Pi 3, and our evaluation shows that de-
vice drivers generated by our framework have acceptable binary
size for canonical embedded systems and the runtime overhead is
negligible.

CCS CONCEPTS
• Security and privacy → Security in hardware; Embedded sys-
tems security;

KEYWORDS
Rust, Device Drivers, Linux Kernel
ACM Reference Format:
Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. 2019. Se-
curing the Device Drivers of Your Embedded Systems: Framework and
Prototype. In Proceedings of the 14th International Conference on Availabil-
ity, Reliability and Security (ARES 2019) (ARES ’19), August 26–29, 2019,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES ’19, August 26–29, 2019, Canterbury, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7164-3/19/08…$15.00
https://doi.org/10.1145/3339252.3340506

Canterbury, United Kingdom. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3339252.3340506

1 INTRODUCTION
Modern computer systems are often connected with many periph-
eral devices (like mouses, keyboards, wireless adapters and USB
flash drives), or integrate special hardware infrastructures (like
SGX/TrustZone). Operating systems usually contain device drivers
which control the hardware connected to computers, and provide
an universal well-defined interface for userspace applications to
interact with different devices. This way, applications do not need
to know about the low-level details, and can reuse the hardware
manipulation code in device drivers.

Unfortunately, device drivers have become one of the most sig-
nificant source of complexity and vulnerability for computing sys-
tems. Device drivers account for more than 60% of the code base
of Linux kernel1. Recent study also shows that device drivers are
more vulnerable than other code in the kernel[3][12][9][2]. What
further complicates the situation is that the monolithic architec-
ture of Linux kernel implies that drivers will run with kernel per-
missions and can do anything it wishes. This situation becomes
worse for out-of-tree third-party drivers because they may not re-
ceive enough scrutiny and generally have lower quality. In 2016,
Google reported that about 85% of the Android kernel bugs hap-
pened in vendor drivers[13]. Numerous research projects were pro-
posed to tackle this problem, such as hardware-based isolation[14],
software-based isolation[11], language-based isolation[17], micro-
kernel architecture[8][6], user-space device drivers[1], etc. How-
ever, although these techniques protect device drivers against com-
mon exploits, they either need tomodify the kernel or require extra
hardware support. Some of these proposed methods even have un-
acceptable overheads. In this paper, we propose a new approach to
protect device drivers: Using a safe programming language called
Rust. The idea is to leverage the Rust compiler’s powerful type
system to prevent device driver developers from making mistakes,
which become attack vectors exploited by hackers. Since most of
the security checks are done at compile time, many errors can
be detected before drivers are deployed, meanwhile, this method
introduces negligible runtime overhead and requires no modifica-
tions of the kernel.

Rust is a strongly-typed programming language that focuses on
memory-safety, concurrency and performance. Rust enforces most
1We ran cloc against Linux 4.19.27, drivers/ directory contributes 12074795 out of
totally 18911993 lines of code.

https://doi.org/10.1145/3339252.3340506
https://doi.org/10.1145/3339252.3340506
https://doi.org/10.1145/3339252.3340506

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Li and Wang, et al.

of its safety guarantees at compile time, resulting in little runtime
overhead comparing with other memory-safe languages like Java
or C#, which need to manage memory at runtime (i.e. garbage col-
lection). Rust is also designed for safe system-level programming.
Firstly, Rust has a unique ownership system that prevents aliasing,
hence avoids potential bugs such as use-after-free. Secondly, the
borrow checker in Rust keeps track of all the references to make
sure they are always valid, eliminating dangling pointers andmany
other memory corruptions. Thirdly, Rust does not need to perform
garbage collection formemorymanagement, instead, it records the
lifetime of each allocation and statically determines when to deal-
locate resources. If implemented correctly, Rust can achieve com-
parable performance to C/C++.With all of the above features, Rust
becomes a promising language to carry out high-performance low-
level system programming tasks.

In this paper, we introduce our work that leverages Rust’s secu-
rity features for Linux device driver development. We propose and
build a framework that integrates the Rust programming language
with the Linux kernel build system, and automatically re-exports
kernel functions and data structures. We also reimplement parts
of the Rust standard library so that device driver developers can
take advantage of Rust’s safety guarantees to manage kernel mem-
ory and handle synchronizations.We provide a general but concise
interface for device driver developers to quickly build safe device
drivers in Rust. We also implement a real-world device driver to
demonstrate the capabilities and evaluate its performance.

We have open-sourced our source code2 on GitHub. Our work is
partially based on some previous efforts towards integrating Rust
into kernel programming. The files kernel-cflags-finder,
src/printk.rs and src/c_types.rs are from Geoffrey Thomas
and Alex Gaynor’s linux-kernel-module-rust project[15].

In summary, our contributions are listed as follows:
• Methodology:Wepropose a new approach tomitigate com-

mon security issues in Linux device driver development. Our
approach is of great benefit for third-party hardware man-
ufacturers to develop reliable and safe device drivers with
low runtime overhead, without modifying the Linux kernel.

• Implementation: We implement a framework that assists
developers to build Linux device drivers in Rust. The frame-
work integrates the package manager of Rust (i.e. Cargo)
and the build system of the Linux kernel (i.e. Kbuild), and
provides several useful libraries for developers to easilyman-
age kernel memory and handle synchronizations, etc. We
also implements a real-world device driver for LAN9512, a
USB to Ethernet controller, to show that our framework is
capable enough to deal with requirements in reality.

• Security: We discuss common security issues in Linux de-
vice drivers and demonstrate that Rust can help program-
mers to either eliminate or mitigate several vulnerabilities
during the development.

• Evaluation: We design and perform several benchmarks
to test the device drivers that we implement based on our
framework. The results show that the Rust compiler is able
to generate kernel modules with acceptable binary size for

2https://github.com/lizhuohua/linux-kernel-module-rust/

embedded systems, and writing device drivers in Rust in-
curs negligible runtime overhead.

2 BACKGROUND
In this section, we present the background knowledge of Linux
device drivers and the Rust programming language, and show how
Rust can help to solve some security bugs in device drivers using
its security features.

2.1 Linux Device Drivers
Device drivers are an important software component that provide
an interface between the operating system and hardware devices.
In general, a driver is responsible for three tasks: (1) configure and
manage one or more devices; (2) convert requests from the kernel
into requests to hardware; and (3) deliver the results from hard-
ware to the kernel.

Although the Linux kernel is monolithic, it is able to extend its
functionalities at runtime, by dynamically inserting loadable ker-
nel modules. A kernel module is an object file and it will be linked
with the kernel when it is inserted. Many third-party vendors take
advantage of this feature to distribute their device drivers as indi-
vidual kernel modules instead of merging the source code to the
mainline kernel. As stated in the previous section, this form of de-
vice drivers introduces many security threats.Therefore, in this pa-
per, we only address the case where drivers are compiled as kernel
modules.

For the Linux kernel, all devices can be classified into three fun-
damental types[4]: character devices, which are byte-stream ori-
ented (like a file); block devices, which support random accesses;
and network devices, which manipulate streams of packets. Figure
1 depicts the general architecture of Linux device drivers. Device
drivers play a role in communicating with hardware and hence
applications only need to interact with the system call interface
provided by the kernel. This way, although there are many differ-
ent devices in practice, they all implement an unified interface pro-
vided by the kernel so that the differences between them are trans-
parent to users. Writing a device driver involves defining several
“callback functions” for the targeted device and registering them to
the kernel. When the kernel needs to operate this device, it will in-
voke the corresponding callback functions. Also, developers often
make use of functions and data structures defined in the kernel,
and build device drivers on top of other modules or subsystems.

However, writing a “safe” device driver is non-trivial.Themono-
lithic architecture means the entire kernel, both the core kernel
and device drivers, runs in the same address space with the same
privilege level. This implies that there is no mechanism that can
prevent a driver from mistakenly invoking kernel functions or ma-
nipulating critical kernel memory, which may cause a kernel panic.
Comparing with micro-kernels, this architecture is more efficient
but it also exposes a larger attack surface. It forces users to trust
all the device drivers, including those provided by third-party ven-
dors. As a result, any bug in a device driver can lead to severe
vulnerabilities, which may further compromise the entire system.

Typical bugs that happen in device drivers include: incorrect
boundary checks, null pointer dereference, information leakage,

Securing the Device Drivers of Your Embedded Systems: Framework and Prototype ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Figure 1: General Architecture of Linux Device Drivers

use-after-free, etc. Many of them can be easily exploited by attack-
ers. These bugs can be attributed to the fact that Linux is written
in C, an unsafe programming language[2]. This fact motivates us
to come up with a way to take advantage of a safe programming
language for device driver development.

2.2 The Rust Programming Language
As a new language, Rust integrates both practical experience and
research outcomes of C/C++ and ML/Haskell in the past several
decades, and has attracted attention from both academia and in-
dustry. The most unique features that truly distinguish Rust are
the “ownership” system and traits. The former enables Rust to guar-
antee memory safety without performing garbage collection, and
the latter declares a set of methods that a type must implement.

2.2.1 The Ownership System. Themain idea of the ownership sys-
tem is derived from concepts of “linear logic”[7] and “linear types”[16],
which means all values must be used exactly once. In such a sys-
tem, neither reference counting nor garbage collection is needed
because linear resources would not be duplicated or discarded. It
also enables safe parallel computation because shared resources
do not exist. However, the linear type system is too constrained to
be practical. Therefore, Rust uses the concept of ownership, which
relaxes the constraint of pure linearity.

Under the ownership system, each value (e.g., an integer on the
stack) has an unique owner.The value is destroyedwhen the owner
of the value goes out of scope. Ownership can be moved (trans-
fered) between variables. Once a value is moved, it is no longer
accessible from the original variable binding. Rust also allows ref-
erences that temporarily borrow a value without invalidating the
original binding. The behavior of references is restricted. On the
one hand, to prevent dangling pointer bugs, the lifetime of a refer-
ence cannot exceed the value that it points to. On the other hand,

it is safe to have more than one reference to a value, as long as
the value is being read; when the value is written, only one single
reference is allowed to exist.

The following code snippet shows the ruleswementioned above.
(a) Line 4 defines a string whose ownership is binded to the vari-
able x. After assigning x to y at line 5, the ownership is moved
to y and the original binding x no longer has access to the string
value at line 7. (b) Line 8 and line 9 show that it is not allowed to
define multiple mutable references. (c) y is constrained to live in
a scope that is defined by a pair of curly brackets. At line 13, y is
invalid since it goes out of the scope. (d) r is a reference to y, read-
ing r outside the scope of y is an error because the lifetime of y
has ended and r becomes a dangling pointer at line 14. Note that
the above mentioned problems can be checked at compile time to
reduce security faults.

1 fn main() {
2 let r;
3 {
4 let mut x = String::from("hello");
5 let mut y = x; // NOTE: x moved here
6 println!("{}", y); // OK
7 println!("{}", x); // ERROR: use of moved value x
8 let r1 = &mut y;
9 let r2 = &mut y; // ERROR: cannot borrow y as mutable

10 // more than once
11 r = &y;
12 } // NOTE: the scope of y ends here
13 println!("{}", y); // ERROR: y is out of the scope
14 println!("{}", r); // ERROR: borrowed value y does not live
15 // long enough
16 }

In summary, Rust’s ownership system eliminates aliasing, and
guarantees that every reference is valid. This prevents many mem-
ory corruption bugs like double-free and use-after-free. Note that
developers gain more benefits from this design: since there is only
one owner for each value, when the owner is out of scope, the com-
piler can ensure that it is safe to deallocate this value. Therefore,
no garbage collection is needed. Also, since mutable reference is
unique, race condition is also avoided because it is impossible to
have more than one thread accessing the same variable.

2.2.2 Trait. Traits define interfaces for types. Different from the
canonical object-oriented programming (OOP) languages (e.g. C++)
that use inheritance to derive properties between classes, Rust uses
traits to define shared behaviors in an abstract way. A trait de-
fines a group of method signatures to depict a set of behaviors
necessary to accomplish some purpose. Implementing a trait on
a type requires the programmer to provide all the definitions of
these methods. This mechanism enables generic programming: a
generic function can accept different types of arguments as long
as they implement the corresponding traits. Trait mechanism can
be regarded as another design pattern that changes the way people
construct their code. Comparing with the traditional OOP design
pattern, traits not only can achieve generic programming, but also
provide additional information for the compiler to perform type
checking. In this paper, we take advantage of this feature to define
a unified interface for each type of device drivers.

3 DESIGN
In this section, we first present the architecture of our system.Then
we discuss some essential components and their design principles.

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Li and Wang, et al.

3.1 Architecture
We build a framework to empower developers to write efficient
and safe device drivers using the Rust programming language.The
main task that our system needs to accomplish is to utilize Rust’s
compiler and type system to develop safe kernel modules. The fol-
lowing challenges have to be considered: (1) How to instruct the
Rust compiler to generate bare-metal machine code that can run
in kernel space; (2) How to invoke functions defined inside the ker-
nel; (3) How to link Rust code with the kernel and generate kernel
modules.

Figure 2 illustrates the architecture of our system. The frame-
work consists of a series of Rust source files that implement several
useful infrastructures (such as kernel memory allocator), and pro-
vide an API for Rust device driver development. Developers can
use the API by simply importing the framework library in their
device driver projects. A JSON specification file is used to create a
bare-metal target for the Rust compiler. Some Rust’s own libraries
also need to be recompiled so they can be used in kernel space. Ker-
nel functions and data structures are re-exported using bindgen.
The Rust compiler compiles both the framework library and the
developer’s library, and generates an object file. The build system
then takes charge of the linking process, during which the object
file is linked as a kernel module.

Being a middleware between developers and the Linux kernel,
our system solves the challengeswementioned above: (1)The build
system instructs the Rust compiler to generate bare-metal code and
recompiles a series of pre-compiled libraries so that they can be
used in kernel space; (2) By using bindgen to transform Linux ker-
nel’s C interface into Rust’s foreign function interface (FFI), Rust
programs are able to invoke C functions defined in the kernel; (3)
The Kernel Build System (Kbuild) is integrated to construct kernel
modules (*.ko).

3.2 Interface of Device Drivers
In our framework, each type of device drivers is modeled as a trait,
which strictly stipulates the interface that every driver of this type
has to implement. Developers should define their own struct to rep-
resent a device driver, then implement the corresponding trait for
this struct. Using this design pattern, every type of device drivers
has the same interface so that they can be easily managed using a
unified framework. This provides a more elegant interface for de-
velopers to implement their drivers, and reduces some boilerplate
code such as device driver registration and unregisteration.

A device driver usually consists of two classes of code: (1) the
device’s logic that is implemented within the driver; (2) the interac-
tions between the driver and the Linux kernel. The former should
be written by developers in pure Rust and the latter is provided by
our framework through FFI bindings. Developers only need to in-
voke the corresponding routines to communicate with the kernel.

3.3 Tools and Infrastructures
To follow the conventional Rust coding style and providemore use-
ful tools for kernel programming, parts of the Rust standard library
are reimplemented to be fitted into the Linux kernel. The memory
allocator is implemented based on Rust’s Global Allocator, which
allows programmers to customize the default memory allocator

Figure 2: The Architecture

and redirect all the memory allocation requests to it. This way,
types defined in the core library which need memory allocation
(e.g. Box<T> and Vec<T>) still work in kernel space. Also, based on
the synchronization primitives provided by the kernel, our frame-
work implements Mutex and Spinlock imitating the Rust standard
library. Since all the definitions of these tools mimic the standard
library, proficient Rust programmers will not find it hard to use
our framework.

4 IMPLEMENTATION
In here, we discuss our implementation. Section 4.1 presents the
technical details on how Rust is integrated into the Linux kernel
build system. This lays the foundation for Section 4.2, in which we
details the implementation of the interface and infrastructures of
our framework.

4.1 Build System
The build system of our project integrates Rust with the Linux ker-
nel. The integration involves two technical aspects. First, due to
the monolithic design of the Linux kernel, device drivers, as a part
of the kernel, are unable to use libraries that exist in the user space
(e.g. the Rust standard library) or perform operations that are for-
bidden inside the kernel (e.g. floating point operations). Therefore,
the default target of the Rust compiler needs to be changed to gen-
erate statically linked and OS-independent machine code without
using floating point instructions. Second, to leverage the existing
data structures and functions defined inside the kernel, the kernel

Securing the Device Drivers of Your Embedded Systems: Framework and Prototype ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

headers need to be translated into Rust bindings. Our system in-
cludes the scripts and makefiles to automate the whole procedure.

4.1.1 Compile OS-independent Rust code. By default, the Rust com-
piler automatically links the standard library and the startup rou-
tine of the C runtime. While this default behavior is proper in user
space, it does not work in kernel space, where the only available “li-
brary” is the kernel itself.Therefore, we enhance the Rust compiler,
to generate code that runs directly on hardware, without relying
on the standard library. This is done by adding a new target to the
Rust compiler.

Rust supports defining new targets by using JSON specification
files, which describe the properties of a compilation target, for ex-
ample, its architecture, its operating system and the default linker.
We create a custom target based on the default specification of a
built-in target3, and modify it to match the needs. The main modi-
fication includes disabling dynamic linking and the use of floating-
point hardware, etc.

Note that the Rust compiler is shipped with a collection of pre-
compiled libraries (core, compiler_builtins, alloc). To use these
libraries for the new target, they need to be recompiled. The core
library provides necessary Rust types and structs such as Result
and Option. The compiler-builtins library contains compiler
intrinsics that LLVM (the codegen backend of the Rust compiler)
may call when generating machine code. The alloc library pro-
vides smart pointers and collections for managing heap-allocated
values. There is an existing tool called cargo-xbuild4 that can au-
tomatically cross-compile those libraries.

4.1.2 Generate bindings for kernel headers. The Linux kernel de-
fines a large number of functions and data structures. Usually, ker-
nel developers are recommended to reuse the code by including
the kernel headers, which cannot be directly read by the Rust com-
piler. To solve this problem, our system re-exports the symbols
defined in the kernel headers by generating Foreign Function In-
terface (FFI) bindings so that developers can call external C func-
tion from Rust. While writing bindings by hand allows us to create
more elegant APIs, we prefer to automatically generate them for
two reasons:

(1) The amount of kernel functions is too large so manually
writing each FFI binding for all the functions is not prac-
tical.

(2) Linux kernel does not guarantee ABI stability, meaning that
the data structures may vary in different versions of the ker-
nel.

We use the bindgen tool, which takes the kernel headers as in-
put and outputs the Rust version type definitions and function dec-
larations. It invokes clang to construct the abstract syntax tree
(AST) of the C headers, then translates them to Rust. In order for
clang to correctly handle kernel headers, we extract the compiler
flags from Kbuild. One drawback of using bindgen is that it can-
not generate bindings for inline functions or macros because they
will be expanded during compilation and hence do not generate
any symbols. As a result, there is no way Rust can call into them.

3Use command rustc -Z unstable-options --print target-spec-json
4https://crates.io/crates/cargo-xbuild

One can resolve this problem bymanually writing C functions that
wrap up inline functions or macros.

4.1.3 Implement various Rust primitives. The standard library de-
fines several language items5 that are essential for the compiler to
work properly. For example, the panic handler function defines the
behavior when a program crashes. Without these, the compiler is
unable to generate the correspondingmachine code. Consequently,
we need to implement these ourselves. We do not implement any
recovery mechanism in the panic handler since it is invoked when
a device driver goes terribly wrong and is unlikely to recover. In-
stead, we assert failure using the BUG macro defined in the kernel,
which outputs the contents of registers and the stack trace, then
stops the current process.

4.2 APIs and Infrastructures
We design and implement an interface for developers to quickly
build device drivers in Rust. Several infrastructures like the kernel
memory allocator and synchronization primitives are re-implemented
to utilize Rust’s security guarantees.

4.2.1 Interface. Device drivers source code often includes boiler-
plate code such as driver registration and initialization.These com-
mon behaviors can be summarized as a unified interface for all de-
vice drivers. In our system, each type of device drivers is modeled
as a trait, which stipulates an interface for this type of drivers. The
following code snippet presents the definition of the CharDevice
trait. It enforces that every character device driver must implement
an initialization function init() which takes a string as the name
of the driver, and a destruction function cleanup().
1 // For character device drivers
2 trait CharDevice: Sized {
3 fn init(name: &'static str) -> KernelResult<Self>;
4 fn cleanup(&mut self);
5 }

Driver developers need to implement their drivers according to
this interface. By using generic programming, our framework can
easily manage different drivers because they have the same inter-
face. The boilerplate code can then be reduced.

4.2.2 Kernel Allocator. To allocate kernel memory in Rust, we re-
implement the default allocator using the GlobalAlloc trait by
wrapping kmalloc() and kfree() defined in the kernel. This way,
all the heap allocation requests will be routed to our customized
allocator. The compiler automatically requests memory when pro-
grammers use types that need memory allocation, such as Box<T>.
Box<T> is a smart pointer type which contains a generic type T, it
can be used to allocate kernel memory for any other types. Then
Rust’s ownership system is able to keep track of the lifetime of the
allocated memory and automatically deallocate it when its lifetime
ends. Therefore, developers are liberated from delicate and error-
prone kernel memory management. The following code shows an
example of allocating an array in kernel memory.
1 fn allocation_example() {
2 let v = Box::new([1, 2, 3]); // Allocate kernel memory using kmalloc()
3 println!("v = {:?}", v); // Output "v = [1, 2, 3]"
4 // Here, v is automatically deallocated using kfree()
5 }

5Some pluggable operations or functionalities that are not hard-coded into the lan-
guage, but are implemented in libraries.

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Li and Wang, et al.

4.2.3 Synchronization Primitives. In order to support synchroniza-
tions in kernel space, we also implement the synchronization prim-
itives Mutex and Spinlock mimicking the Rust standard library.
The underlying lock primitives are the spinlock and mutex pro-
vided by the kernel. By design, Mutex and Spinlock contain a
pointer to the protected data, but do not provide any interface to
access the data.The onlymethod they have is called lock(), which
returns a MutexGuard or SpinlockGuard, respectively. These two
guard types implement the Deref and DerefMut traits so they can
be dereferenced to get a either mutable or immutable reference to
the shared data. Therefore, developers cannot access shared data
unless they explicitly invoke the lock() method. This eliminates
the case where developers forget to lock the data before using it.
Also, by leveraging the ownership system, the compiler will help
us release the lock once the guard is not used anymore.

The following example shows the use of Spinlock to achieve
mutual exclusion. GLOBAL is a Spinlock that encloses shared data
inside. The shared data can be only accessed through global, a
SpinlockGuard returned from the lock() method. This guaran-
tees that shared data is only accessed when the mutex is locked.
When global goes out of scope, the lock is released automatically.
1 lazy_static! {
2 static ref GLOBAL: Spinlock<i32> = Spinlock::new(0); // Shared data
3 }
4
5 fn synchronization_example() {
6 let mut global = GLOBAL.lock(); // Lock the data
7 *global = 1;
8 // Here, the lock is released automatically
9 }

Three benefits are gained from this design: First, Spinlock locks
data, instead of the control flow. Second, developers are required
to lock the data before using it because Spinlock does not provide
any interface to touch the data. Otherwise, the compiler will throw
an compilation error.Third, thanks to the ownership system, devel-
opers do not need to remember to release locks, since they will be
automatically unlocked when they go out of scope.

5 COMMON BUGS IN DEVICE DRIVERS
In this section we first present and categorize some common bugs
in Linux device drivers, then we illustrate how Rust can mitigate
those bugs. We categorize bugs into three groups: (1) Language-
Specific Security Issues: For this kind of bugs, we can solve them
by using a high-level programming language. (2) General Security
Issues: This kind of bugs are intrinsically inevitable, but the Rust
compiler may provide extra help for developers. (3) Logic Errors:
In this case, it is the responsibility of the developers.

To show where the bug is and how it is fixed, we use the diff6
format to display the difference between the original code and the
patched code. Security patched lines are in “green” and preceded
by a “+” sign, while security problematic lines are in “red” and pre-
ceded by a “-” sign. We will not go into the details about how to
exploit a bug due to page limit.

5.1 Language-Specific Security Issues
Many security issues can be ascribed to the use of unsafe program-
ming languages like C. By using a safe programming language, this

6https://en.wikipedia.org/wiki/Diff

kind of bugs can be trivially solved. The following examples illus-
trate this kind of issues.

5.1.1 Array-based buffer overflow. The following code snippet shows
the patch of CVE-2017-1000363. At line 9, the array parport_nr is
indexed by an integer parport_ptr whose value is not carefully
checked, which may cause a buffer overflow. This bug happens be-
cause in C, the boundary of an array is not checked. Even if adver-
sarial inputs overflow the array, the program silently continues so
it is possible for attackers to inject forged data or even hijack the
control flow. At line 10, the index parport_ptr is checked before
use, thus the bug is fixed.

1 diff --git a/drivers/char/lp.c b/drivers/char/lp.c
2 index 565e4cf..8249762 100644
3 --- a/drivers/char/lp.c
4 +++ b/drivers/char/lp.c
5 @@ -859,7 +859,11 @@ static int __init lp_setup (char *str)
6 } else if (!strcmp(str, "auto")) {
7 parport_nr[0] = LP_PARPORT_AUTO;
8 } else if (!strcmp(str, "none")) {
9 - parport_nr[parport_ptr++] = LP_PARPORT_NONE;

10 + if (parport_ptr < LP_NO)
11 + parport_nr[parport_ptr++] = LP_PARPORT_NONE;
12 + else
13 + printk(KERN_INFO "lp: too many ports, %s ignored.\n",
14 + str);
15 } else if (!strcmp(str, "reset")) {
16 reset = 1;
17 }

In contrast, Rust guarantees that any access to an array will be
checked at runtime so this kind of vulnerability can be avoided.The
following Rust example tries to read an out-of-bound value. Run-
ning this program directly will trigger the panic handler, stopping
the execution immediately, so that there is no way for attackers to
exploit buffer overflow to overread/overwrite memory.

1 let mut xs:[i32; 5] = [1, 2, 3, 4, 5]; // 5 elements in total
2 xs[5] = 6; // This will panic!

5.1.2 Using unsafe functions. Although it is well-known that some
deprecated functions like gets, strcpy, and sprintf are danger-
ous and should be eliminated, they still occasionally appear in the
kernel source code. CVE-2010-1084 shows an example of using
sprintf at line 14, which does not check the length of the string it
copies, resulting in memory corruption. The workaround replaces
sprintf with snprintf, which is the safe version of the former
with length checks.

1 diff --git a/net/bluetooth/sco.c b/net/bluetooth/sco.c
2 index f93b939..967a751 100644
3 --- a/net/bluetooth/sco.c
4 +++ b/net/bluetooth/sco.c
5 @@ -960,13 +960,22 @@ static ssize_t sco_sysfs_show(struct class *dev,
6 struct sock *sk;
7 struct hlist_node *node;
8 char *str = buf;
9 + int size = PAGE_SIZE;

10
11 read_lock_bh(&sco_sk_list.lock);
12
13 sk_for_each(sk, node, &sco_sk_list.head) {
14 - str += sprintf(str, "%s %s %d\n",
15 + int len;
16 +
17 + len = snprintf(str, size, "%s %s %d\n",
18 batostr(&bt_sk(sk)->src), batostr(&bt_sk(sk)->dst),
19 sk->sk_state);
20 +
21 + size -= len;
22 + if (size <= 0)
23 + break;
24 +
25 + str += len;
26 }
27
28 read_unlock_bh(&sco_sk_list.lock);

Securing the Device Drivers of Your Embedded Systems: Framework and Prototype ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Instead of naively regarding contiguous sequences as arrays,
Rust provides a higher level abstraction such as str, slice and
array. They strictly define the behaviors when they are copied.
For example, function clone_from_slice clones elements from
one slice to another, and it panics if two slices have different sizes.
Therefore, programmers will be alerted of potential bugs during
driver development.

5.1.3 Uninitialized data. The kernel usually copies data from ker-
nel space to user space. If the unused fields are not zeroed out, sen-
sitive kernel information might be leaked to user space. CVE-2010-
3876 shows that the struct member sll_pkttype is not initialized,
potentially leaking the kernel stack contents to user processes. At
line 9, the bug is fixed by initializing the struct member as zero.
1 diff --git a/net/packet/af_packet.c b/net/packet/af_packet.c
2 index 3616f27b..0856a13 100644
3 --- a/net/packet/af_packet.c
4 +++ b/net/packet/af_packet.c
5 @@ -1742,6 +1742,7 @@ static int packet_getname(struct socket *sock,

struct sockaddr *uaddr,↪→
6 sll->sll_family = AF_PACKET;
7 sll->sll_ifindex = po->ifindex;
8 sll->sll_protocol = po->num;
9 + sll->sll_pkttype = 0;

10 rcu_read_lock();
11 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
12 if (dev) {

Note that the above error will not happen in Rust because Rust’s
memory-initialization check guarantees thatmemory is always ini-
tialized. Therefore, uninitialized data does not exist.

5.1.4 Incorrect kernel memorymanagement. Similar to the dynamic
memory allocation using malloc() and free() in user space, the
Linux kernel also has a general-purpose memory allocator called
kmalloc() and kfree(). The device driver developers are respon-
sible for managing kernel memory, which is delicate and error-
prone. Many vulnerabilities are caused by incorrect kernel mem-
ory management, such as null-pointer dereference, memory leak-
age, double-free, and use-after-free.

CVE-2018-8087 is an example ofmemory leakage caused bymiss-
ing deallocation. The bug is fixed by adding a kfree() at line 11.
This example also reflects the fact that manually managing kernel
memory is potentially dangerous and becomes a burden of devel-
opers.
1 diff --git a/drivers/net/wireless/mac80211_hwsim.c

b/drivers/net/wireless/mac80211_hwsim.c↪→
2 index 6bf063a..66c2ac0 100644
3 --- a/drivers/net/wireless/mac80211_hwsim.c
4 +++ b/drivers/net/wireless/mac80211_hwsim.c
5 @@ -3197,8 +3197,10 @@ static int hwsim_new_radio_nl(struct sk_buff *msg,

struct genl_info *info)↪→
6 if (info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]) {
7 u32 idx = nla_get_u32(info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]);
8
9 - if (idx >= ARRAY_SIZE(hwsim_world_regdom_custom))

10 + if (idx >= ARRAY_SIZE(hwsim_world_regdom_custom)) {
11 + kfree(hwname);
12 return -EINVAL;
13 + }
14 param.regd = hwsim_world_regdom_custom[idx];
15 }

The above problem does not exist in Rust because Rust’s own-
ership system ensures that each allocation will eventually be freed
as long as it is not used anymore. So developers do not need to ex-
plicitly deallocate any resources, it will be released automatically
when it goes out of scope. Thus, if implemented correctly, memory
leakage, double-free and use-after-free should not happen in Rust.
Also, since the ownership system ensures that a reference cannot

outlive the value it points to, hence bogus references such as null
references do not exist.

5.2 General Security Issues
In this section we discuss some general security issues in device
driver programming. They are fundamentally inevitable but Rust
does provide some help to mitigate some of them.

5.2.1 Integer Overflow. An integer overflow[5] happens when the
result of an arithmetic operation does not fit into the fixed size inte-
ger. The result can be too small or too big to be representable with
a given number of digits. For Rust, integer overflow is checked at
runtime. However, for performance considerations, Rust will only
perform overflow checks for debug builds by default. That means
Rust can still help developers to find andmitigate integer overflows
during the development stage. In release builds, overflow checks
are disabled to achieve better performance.

5.2.2 Concurrency. There are more causes of concurrency in ker-
nel space than in user space[4]. First, modern CPUs usually have
multiple cores to support symmetricmultiprocessing (SMP), so ker-
nel code may be executed simultaneously on different processors;
Second, kernel code is preemptible, meaning that driver code may
lose CPU at any time, and the process that replaces it may also
run in the same driver code; Third, device interrupts occur asyn-
chronously, causing concurrent execution of driver code. All of the
above lead to the data race problem.

Rust claims itself to be thread-safe, however, Rust can not pre-
vent general race conditions because this is fundamentally impos-
sible. After all, hardware resources are intrinsically shared. In user
space, Rust uses threads to run code concurrently and uses the
ownership system to prevent sharedmutable states between threads.
However, this does not work in the kernel space because the kernel
itself is preemptible, in other words, every piece of kernel code is
potentially shared by all the user processes. This is agnostic to the
Rust compiler since in the compiler’s point of view, it just compiles
a single-threaded program. As a result, Rust cannot prevent kernel
concurrency issues as easy as in the user space. Luckily, Rust’s rig-
orous type checking provides some help.

Device driver developers still need to carefully determinewhether
a variable might be accessed simultaneously and thus it needs ex-
plicit concurrency management. In our system, we implement two
synchronization primitives: Spinlock and Mutex, whichmimic the
behaviors of Linux kernel’s spinlock and mutex.

5.3 Logic Errors
Developers should be responsible tominimize and handle any logic
error during the programdevelopment. Nevertheless, they still ben-
efit from Rust’s security features.

5.3.1 Deadlock. Adeadlock is a state inwhich a group of locks are
waiting for each other and no one is able to proceed. It happens be-
cause of incorrect concurrencymanagement. Although Rust claims
that it guarantees thread safety, it does not consider deadlocks un-
safe, because deadlocks cannot be statically prevented. Also, unlike
Go which detects deadlocks at runtime, Rust tries to keep its run-
time as simple as possible to guarantee performance. As a result,

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Li and Wang, et al.

developers must be careful to avoid deadlocks in their software de-
velopment.

5.3.2 Error Handling. Failures are common in device drivers, but
if handled properly, most of them can be detected and resolved
without leading to kernel panics. Nevertheless, it is always chal-
lenging to do error handling. Firstly, programmers tend to focus on
functionalities instead of carefully considering all possible cases of
errors; Secondly, missing error handling may not be noticed until
the product has been shipped to customers and some disasters have
happened. Thirdly, programmers usually use inconsistent and im-
plicit placeholders as return values (e.g. 0 for success and -1 for
failure). Rust’s Result type provides an elegant way to handle er-
rors. The type Result<T, E> is an enum with two possible vari-
ants, Ok(T), which represents success and contains a value of type
T, and Err(E) which indicates an error of type E. Functions with
return type Result are able to return either a value or an error.
Therefore, Rust helps developers to be more disciplined in the code
development.

Traditionally, C handles errors by explicitly checking the return
values, which is clumsy and error-prone. In the following C code
snippet, smsc95xx_read_reg loads the content of a register into
a buffer read_buf. If failure happens, this function returns a neg-
ative integer. Line 2 explicitly checks whether this function suc-
ceeds or not.
1 // C style error handling
2 int ret = smsc95xx_read_reg(dev, COE_CR, &read_buf);
3 if (ret < 0)
4 return ret;

Note that it is a common problem that programmers may for-
get to check the return value, thus fail to handle the error. Rust
stipulates that to get the underlying value contained in a Result,
the error case must be handled. The above code may be rewritten
in Rust as follows. The ret variable is of type integer if and only
if the Result is consumed by the match statement. And the Rust
compiler will check whether the match statement handles both the
success case and the error case.
1 // Rust style error handling
2 let ret = match smsc95xx_read_reg(dev, COE_CR) {
3 Ok(val) => val,
4 Err(e) => return e,
5 };

6 EVALUATION
This section we report our experiment on evaluating the runtime
cost of Rust device drivers. We build a driver for LAN9512, a USB
2.0 to 10/100 Ethernet Controller. The device used in our experi-
ment is Raspberry Pi 3, which runs Linux kernel 4.19.29 provided
by Raspberry Pi Foundation. The kernel is compiled by ourselves
using clang. We want to address the following questions:

• Does Rust generate huge kernel modules?
• What is the performance impact of our system on real-world

device drivers?

6.1 Binary Size
Since Rust is designed for system programming and its runtime is
deliberately kept minimal, it should be able to generate binaries
with acceptable sizes for embedded devices. To demonstrate the

Table 1: The Size of Kernel Modules (Unit: Byte)

Driver Name C Version Rust Version Overhead
hello_world 3632 4252 17.07%
yes 5340 22312 317.83%
sysctl 4804 20288 322.31%
smsc9512 10880 34224 214.56%

Table 2: Transmission Bandwidth (Unit: KBytes/sec)

Attempts 1 2 3 4 5

Rust Send 11554 11555 11555 11555 11554
Receive 11469 11470 11469 11470 11468

C Send 11554 11561 11555 11555 11561
Receive 11469 11470 11468 11468 11469

code size generated by the Rust compiler, besides the real-world
driver, we also implement several “toy” drivers in both C and Rust.
All the Rust versions enable the release build and link-time opti-
mization, and C versions are compiled according to the default ker-
nel configuration used by Raspberry Pi 3. Table 1 shows the binary
size comparison of these kernel modules.

Except for the simplest “hello world” driver, kernel modules
written in Rust are generally 2-3 times larger than the correspond-
ing C versions. After examining the contents of the ELF sections,
we found that the large size mainly comes from the linkage of Rust
libraries, for example, the core library. And it can be predicted that
the binary size will be even larger if more libraries are linked. Al-
though this may be an issue in systems with restricted resources,
it is important to note that the binary size is still within “several
kilobytes”, and this is usually acceptable for modern devices that
run on Linux.

6.2 Performance
We evaluate the runtime performance of the LAN9512 Ethernet
controller driver. For simplicity reasons, we only implement nec-
essary functions and omit the functionalities that are unrelated to
performance tests such as power management, suspend/resume,
and hardware initialization.We connect the Raspberry Pi to a desk-
top through an Ethernet cable. Both of them install a network speed
test tool called iPerf7. Note that, different from common perfor-
mance evaluation methods, we do not test the execution time since
device drivers are usually not CPU-bound. Instead, we use iPerf
to measure the bandwidth, jitters and packet loss rate of the net-
work connection.

6.2.1 Transmission Bandwidth. Table 2 gives the bandwidth mea-
sured by iPerf. Note that there is little difference between C and
Rust because both of them have reached the maximum bandwidth.
This reflects the fact that most device drivers are simply an inter-
face between hardware and the kernel, so that usually they are not
the performance bottleneck.

7https://iperf.fr/

Securing the Device Drivers of Your Embedded Systems: Framework and Prototype ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

6.2.2 Jitters. Jitter quantifies the differences between consecutive
transmit times. It measures the stability of network delays. We set
the target bandwidth by sending packets in different rates. Figure 3
presents the change of jitters along with different bandwidths. As
the figure shows, in general the C version has lower jitters, while
the difference between C and Rust is quite small. Rust is even better
in some cases (bandwidth = 60 and 70).

10 20 30 40 50 60 70 80 90 100 110
Transmition Bandwidth (Mbit/sec)

0.0

0.1

0.2

0.3

0.4

0.5

Jit
te

rs
 (m

s)

0.523

0.227

0.154

0.122 0.124

0.098 0.093
0.102 0.101

0.119
0.108

0.521

0.209

0.139

0.109 0.109 0.106 0.102
0.087

0.098 0.093 0.094

Rust Version
C Version

Figure 3: Jitters

6.2.3 Packet Loss Rate. When the sending rate exceeds the capac-
ity of the receiver, packet loss will happen. iPerf also measures
the packet loss rate for different bandwidths. From Figure 4, again,
there is no significant difference between C and Rust.

10 20 30 40 50 60 70 80 90 100 110
Transmission Bandwidth (Mbit/sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pa
ck

et
 L

os
s

Ra
te

0.000 0.000 0.000

0.029

0.226

0.360

0.457

0.528

0.576

0.598 0.599

0.000 0.000 0.000

0.029

0.229

0.356

0.460

0.523

0.577

0.600 0.600

Rust Version
C Version

Figure 4: Packet Loss Rate

6.2.4 Summary. The above performance evaluation shows that
the difference between C and Rust is negligible. This is expected
because Rust is designed for low-level programming and most of

its security checks are done at compile time. We conclude the Per-
formance evaluation results in the following aspects: (1) The Rust
compiler is capable enough to generate machine code with com-
parable performance to the C compiler. (2) Device drivers usually
work as an interface between the kernel and hardware, so they
generally are not the performance bottleneck in real-world appli-
cations.

7 DISCUSSION
What can a safe programming language solve? Based on our expe-
rience of writing device drivers in Rust, we discuss what kind of
problems it can solve for kernel programming. Firstly, language-
based security issues such as array-based buffer overflow and un-
safe string manipulation, can be trivially solved, because Rust pro-
vides higher-level language primitives such as arrays with bounds-
checking. Secondly, Rust’s type system makes programmers more
disciplined.The compiler can help in detectingmany errors at com-
pile time, for example, passing arguments with wrong types, ac-
cessing shared data without locking the corresponding mutex, etc.
Thirdly, Rust reduces the burden of memory management: If a
chunk of memory is allocated through Rust’s allocator, and it is
only used within the driver module, then the Rust compiler is able
to trace the lifetime of it and perform deallocation automatically.

What can it NOT solve? There are also several cases that Rust can-
not tackle. Firstly, since the kernel is written in C, each invoca-
tion of kernel functions must be unsafe. These invocations are in-
evitable because device drivers must interact with the kernel. Al-
though we encapsulate commonly used kernel functions and pro-
vide a safe API, this approach is not sustainable because of the
large quantity of kernel functions. Secondly, low-level hardware
manipulations are intrinsically unsafe because hardware resources
are naturally shared and cannot fit in with the ownership system.
Thirdly, Rust cannot in general prevent deadlocks, race conditions
and integer overflow. These should be the responsibility of the de-
velopers. Finally, most logic errors are due to programmers care-
lessness, so they cannot be detected by the compiler.

Some limitations of our project. Firstly, even if our framework is
used, writing device drivers may require some level of unsafe code.
Because (1) writing C-style callback functions, (2) calling kernel
functions, (3) manipulating raw pointers are quite common in de-
vice driver development, but all of them are unsafe operations in
Rust. Passing raw pointers to the kernel makes the compiler lose
track of the lifetime and ownership, meaning that memory corrup-
tions like use-after-free are still possible. Secondly, our provided
APIs are not general enough to work for every scenario. For ex-
ample, Mutex and Spinlock do not work if the kernel requires a
pointer of a lock. Thirdly, we only evaluate the performance on
LAN9512 Ethernet controller, whose maximum throughput is only
100 Mbps. Finally, we have not devised a failure recovery mecha-
nism, once an error happens, the kernel handler directly stops the
current process and prints out a stack trace. This will be our future
work.

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Li and Wang, et al.

8 RELATEDWORK
8.1 Existing Projects about Rust Kernel Module
The first known attempt of writing kernel modules in Rust is a
Taesoo Kim’s GitHub repository rust.ko[10]. The first commit is in
2013, long before Rust’s first stable version was released. Although
it is just a toy example, it shows that Rust is able to carry out kernel
programming. Geoffrey Thomas and Alex Gaynor’s linux-kernel-
module-rust[15] is a more recent project which has tremendous
improvements. It uses bindgen to generate bindings. It also tries
to provide some safe abstractions for kernel programming, such as
a safe interface for user space pointers. Our work depends on Ge-
offrey Thomas and Alex Gaynor’s kernel-cflags-finder script
which extracts necessary compiler flags from Kbuild in order for
bindgen to work.

8.2 ixy.rs
Ixy8 is a userspace network device driver for educational purposes.
There are two main features of this project: (1) The whole driver
consists only about 1000 lines of C code; (2) It controls network
adapters and implements packet processing totally in userspace.
Ixy.rs9 is a Rust reimplementation of the original Ixy. By leverag-
ing the safety guarantees provided by Rust, it achieves high secu-
rity properties. However, since the driver resides in userspace, it
cannot handle interrupts which can be done in kernel space, mean-
ing that only poll-mode is supported. This will consume too much
CPU resources and hence it is not suitable for real-world device
drivers.

8.3 SafeDrive
SafeDrive[17] consists of a framework that can dynamically de-
tect type violations in Linux device drivers using language-based
methods and a recovery system that helps recover from failures.
SafeDrive automatically generates runtime checks according to each
function’s annotations. Although it provides a simple inference
mechanism, programmers still need to annotate kernel headers by
hand. Also, this project only focuses on bound violations, it does
not check other memory safety violations like dangling pointers.

9 CONCLUSION
In this paper, we design and implement a framework for device
driver developers to build Linux kernel modules in Rust. We in-
tegrate Rust’s package manager (Cargo) and Linux’s build system
(Kbuild), and reimplement parts of the standard library to provide
useful tools and infrastructures for developers. We give examples
of common security bugs in kernel programming, then show that
in our framework, these issues can either be eliminated or miti-
gated. Our evaluation shows that our framework generates kernel
modules with acceptable binary size and the runtime overhead is
negligible.

8https://github.com/emmericp/ixy
9https://github.com/ixy-languages/ixy.rs

ACKNOWLEDGMENTS
We thank our anonymous reviewers for their valuable feedback
and assistance. The work of John C.S. Lui is supported in part by
the GRF R4032-18.

REFERENCES
[1] Silas Boyd-Wickizer and Nickolai Zeldovich. 2010. Tolerating Malicious Device

Drivers in Linux. In Proceedings of the 2010 USENIX Conference on USENIX An-
nual Technical Conference (USENIXATC’10). USENIX Association, Berkeley, CA,
USA, 9–9. http://dl.acm.org/citation.cfm?id=1855840.1855849

[2] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and
M. Frans Kaashoek. 2011. Linux Kernel Vulnerabilities: State-of-the-art Defenses
and Open Problems. In Proceedings of the Second Asia-Pacific Workshop on Sys-
tems (APSys ’11). ACM, New York, NY, USA, 5:1–5:5. https://doi.org/10.1145/
2103799.2103805

[3] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler.
2001. An Empirical Study of Operating Systems Errors. In Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles (SOSP ’01). ACM,
New York, NY, USA, 73–88. https://doi.org/10.1145/502034.502042

[4] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. 2005. Linux De-
vice Drivers, 3rd Edition. O’Reilly Media, Inc.

[5] Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2012. Understanding In-
teger Overflow in C/C++. In Proceedings of the 34th International Conference
on Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 760–770.
http://dl.acm.org/citation.cfm?id=2337223.2337313

[6] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. 1995. Exokernel: An Operat-
ing SystemArchitecture for Application-level ResourceManagement. In Proceed-
ings of the Fifteenth ACM Symposium on Operating Systems Principles (SOSP ’95).
ACM, New York, NY, USA, 251–266. https://doi.org/10.1145/224056.224076

[7] Jean-Yves Girard. 1995. Linear Logic: Its Syntax and Semantics. In Proceedings
of the Workshop on Advances in Linear Logic. Cambridge University Press, New
York, NY, USA, 1–42. http://dl.acm.org/citation.cfm?id=212876.212880

[8] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanen-
baum. 2006. MINIX 3: A Highly Reliable, Self-repairing Operating System.
SIGOPS Oper. Syst. Rev. 40, 3 (July 2006), 80–89. https://doi.org/10.1145/1151374.
1151391

[9] Rob Johnson and David Wagner. 2004. Finding User/Kernel Pointer Bugs with
Type Inference. In Proceedings of the 13th Conference on USENIX Security Sym-
posium - Volume 13 (SSYM’04). USENIX Association, Berkeley, CA, USA, 9–9.
http://dl.acm.org/citation.cfm?id=1251375.1251384

[10] Taesoo Kim. [n.d.]. A minimal Linux kernel module written in rust. https://
github.com/tsgates/rust.ko.

[11] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich, and
M. Frans Kaashoek. 2011. Software Fault Isolation with API Integrity and
Multi-principal Modules. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP ’11). ACM, New York, NY, USA, 115–128.
https://doi.org/10.1145/2043556.2043568

[12] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and
Gilles Muller. 2011. Faults in Linux: Ten Years Later. In Proceedings of the Six-
teenth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA, 305–
318. https://doi.org/10.1145/1950365.1950401

[13] Jeffrey Vander Stoep. 2016. Android: protecting the kernel.
[14] L. Tan, E. M. Chan, R. Farivar, N. Mallick, J. C. Carlyle, F. M. David, and R. H.

Campbell. 2007. iKernel: Isolating Buggy and Malicious Device Drivers Us-
ing Hardware Virtualization Support. In Third IEEE International Symposium
on Dependable, Autonomic and Secure Computing (DASC 2007). 134–144. https:
//doi.org/10.1109/DASC.2007.16

[15] Geoffrey Thomas and Alex Gaynor. [n.d.]. Framework for writing Linux ker-
nel modules in safe Rust. https://github.com/fishinabarrel/linux-kernel-module-
rust.

[16] Philip Wadler. 1990. Linear Types Can Change the World!. In PROGRAMMING
CONCEPTS AND METHODS. North.

[17] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals,
Matthew Harren, George Necula, and Eric Brewer. 2006. SafeDrive: Safe and
Recoverable Extensions Using Language-based Techniques. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and Implementation
- Volume 7 (OSDI ’06). USENIX Association, Berkeley, CA, USA, 4–4. http:
//dl.acm.org/citation.cfm?id=1267308.1267312

http://dl.acm.org/citation.cfm?id=1855840.1855849
https://doi.org/10.1145/2103799.2103805
https://doi.org/10.1145/2103799.2103805
https://doi.org/10.1145/502034.502042
http://dl.acm.org/citation.cfm?id=2337223.2337313
https://doi.org/10.1145/224056.224076
http://dl.acm.org/citation.cfm?id=212876.212880
https://doi.org/10.1145/1151374.1151391
https://doi.org/10.1145/1151374.1151391
http://dl.acm.org/citation.cfm?id=1251375.1251384
https://github.com/tsgates/rust.ko
https://github.com/tsgates/rust.ko
https://doi.org/10.1145/2043556.2043568
https://doi.org/10.1145/1950365.1950401
https://doi.org/10.1109/DASC.2007.16
https://doi.org/10.1109/DASC.2007.16
https://github.com/fishinabarrel/linux-kernel-module-rust
https://github.com/fishinabarrel/linux-kernel-module-rust
http://dl.acm.org/citation.cfm?id=1267308.1267312
http://dl.acm.org/citation.cfm?id=1267308.1267312

	Abstract
	1 Introduction
	2 Background
	2.1 Linux Device Drivers
	2.2 The Rust Programming Language

	3 Design
	3.1 Architecture
	3.2 Interface of Device Drivers
	3.3 Tools and Infrastructures

	4 Implementation
	4.1 Build System
	4.2 APIs and Infrastructures

	5 Common Bugs in Device Drivers
	5.1 Language-Specific Security Issues
	5.2 General Security Issues
	5.3 Logic Errors

	6 Evaluation
	6.1 Binary Size
	6.2 Performance

	7 Discussion
	8 Related Work
	8.1 Existing Projects about Rust Kernel Module
	8.2 ixy.rs
	8.3 SafeDrive

	9 Conclusion
	Acknowledgments
	References

