
TaintART: A Practical Multi-level Information-Flow
Tracking System for Android RunTime

Mingshen Sun∗, Tao Wei†, and John C.S. Lui∗

∗ The Chinese University of Hong Kong
† Baidu X-Lab

October 25 @ CCS 2016



Introduction – Android Malware

Mobile devices become the biggest target among all threats

Report

From 2004 to 2013 we detected nearly 200,000 samples of malicious
mobile code. In 2014 there were 295,539 new programs, while the
number was 884,774 in 2015. — Kaspersky 1

1https://securelist.com/analysis/kaspersky-security-bulletin/
73839/mobile-malware-evolution-2015/

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 2 / 24

https://securelist.com/analysis/kaspersky-security-bulletin/73839/mobile-malware-evolution-2015/
https://securelist.com/analysis/kaspersky-security-bulletin/73839/mobile-malware-evolution-2015/


Introduction – Android Malware

Android malware samples accounted for 98% of all mobile
threats

Trojan
Spyware
Phishing apps
Ransomware
Rootkit
…

2
2http://www.phonearena.com/news/

Malware-on-Android---a-myth-or-real-threat_id37322
Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 3 / 24

http://www.phonearena.com/news/Malware-on-Android---a-myth-or-real-threat_id37322
http://www.phonearena.com/news/Malware-on-Android---a-myth-or-real-threat_id37322


Rest of the talk…

1 Introduction to dynamic taint analysis

2 TaintART: A Practical Multi-level Information-Flow Tracking System
for Android RunTime

Introduction to dynamic taint analysis system
TaintART
Background of Dalvik and ART
System Design of TaintART
Implementation & Case Study
Evaluation by macro/micro benchmark

3 Summary

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 4 / 24



Introduction

Dynamic taint analysis (aka. dynamic information-flow
analysis)

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 5 / 24



Introduction

Dynamic taint analysis (aka. dynamic information-flow
analysis)

1 label (taint) sensitive data from certain functions (source)

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 6 / 24



Introduction

Dynamic taint analysis (aka. dynamic information-flow
analysis)

1 label (taint) sensitive data from certain functions (source)
2 handle label transitions (taint propagation) between variables, files,

and procedures at runtime
3 a tainted label transmit out of the device through some functions

(sinks)
4 data leakage

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 7 / 24



Introduction

Applications of dynamic taint analysis systems (aka. dynamic
information-flow analysis)

1 attack detection and prevention
2 information policy enforcement
3 testing in software engineering
4 data lifetime and scope analysis

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 8 / 24



Introduction

Current status of dynamic taint analysis tool for Android
TaintDroid is a notable system released in 2010 by William Enck et
al., and many systems are based on TaintDroid
TaintDroid was designed for VM-based system and implemented
on legacy Android systems (2.1, 2.3, 4.1, and 4.3)
recent Android adopted ahead-of-time (AOT) compilation strategy
and introduced new Android RunTime (ART) to replace Davlik VM
portability, compatibility, and performance issues

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0

0.1

0.2

0.3

0.4

m
ea

n=
19
.1

1

m
ea

n=
11

.3
7

m
ea

n=
20
.6

9

m
ea

n=
12
.6

8

Android 2.3 4.0 4.4 5.0 6.0

Android SDK Version

Pe
rc

en
ta

ge

Target SDK Version (Oct. 2015) Minimum SDK Version (Oct. 2015)

Target SDK Version (Feb. 2016) Minimum SDK Version (Feb. 2016)

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 9 / 24



TaintART

TaintART
We design and implement TaintART, a dynamic information-flow
tracking system which targets the latest Android runtime
TaintART introduces a multi-level taint label to tag the sensitive
levels
TaintART instruments Android’s compiler and utilizes processor
registers for taint storage
TaintART only needs registers accesses and achieve faster taint
propagation compared to TaintDroid

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 10 / 24



Background – Android App Environment

The Dalvik app environment
source code -> dex bytecode -> optimized dex bytecode -> run

The ART app environment
source code -> dex bytecode -> compiled native code -> run

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 11 / 24



System Design – Overview of TaintART

The TaintART compiler in the installation stage
The TaintART runtime in the runtime stage

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 12 / 24



System Design – Taint Tag Storage

Taint tag storage
The TaintART compiler will reserve registers for taint storage

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 13 / 24



System Design – Taint Propagation Logic

Taint tag propagation (from R1 to R0)
1 mask
2 shift
3 merge

Figure: Taint tag propagates from R1 to R0.
Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 14 / 24



System Design – Taint Propagation Logic

Taint propagation logic
classes of instructions (instruction type and related locations)
e.g., move, boolean not, add, etc.
the location is an abstraction over the potential registers containing
variables or constants

Method invocation taint propagation
Binder IPC & native code taint propagation

Table 1: Descriptions of multi-level aware taint propagation logic.

HInstruction (Location) Semantic Taint Propagation Logic Description

HParallelMove(dest, src) dest ← src Set dest taint to src taint, if src is constant then clear dest taint

HUnaryOperation(out, in)
out ← in Set out taint to in taint, unary operations ∈ {!, -, ~}

HBooleanNot, HNeg, HNot

HBinaryOperation(out, first, second)

out ← first ⊗ second
Set out taint to max(first taint, second taint),
⊗ ∈ {+, -, *, /, %, <<, >>, &, |, ^}

HAdd, HSub, HMul, HDiv, HRem,

HShl, HShr, HAnd, HOr, HXor

HArrayGet(out, obj, index) out ← obj[index] Set out taint to obj taint

HArraySet(value, obj, index) obj[index] ← value Set obj taint to value taint

HStaticFieldGet(out, base, offset) out ← base[offset] Set out taint to base[offset] field taint

HStaticFieldSet(value, base, offset) base[offset] ← value Set base[offset] field taint to value taint

HInstanceFieldGet(out, base, offset) out ← base[offset] Set out taint to base[offset] field taint

HInstanceFieldSet(value, base, offset) base[offset] ← value Set base[offset] field taint to value taint

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 15 / 24



Implementation & Case Study

Taint sources and privacy leakage
levels

four levels: no leakage, device
identity, sensor data & location data
leakage, and sensitive content
classes or services: Telephony
Manger, Sensor Manger, Location
Manger, Content Resolver, File,
Camera, and MediaRecorder

Case study for privacy tracking
analysis popular apps at runtime
tracking data flows
Taobao leaks device identity, sensor
data and location data at runtime

Table 2: Taint Sources and Privacy Leakage Levels

Level Leaked Data Source Class/Service

0 (00) No Leakage N/A N/A

1 (01) Device Identity

IMSI TelephonyManager

IMEI TelephonyManager

ICCID TelephonyManager

SN TelephonyManager

2 (10)

Sensor Data
Accelerometer SensorManager

Rotation SensorManager

Location Data

GPS Location LocationManager

Last Seen Location LocationManager

Network Location LocationManager

3 (11) Sensitive Content

SMS ContentResolver

MMS ContentResolver

Contacts ContentResolver

Call log ContentResolver

File content File

Camera Camera

Microphone MediaRecorder

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 16 / 24



Evaluation – Macrobenchmarks

Macrobenchmarks
app launch time: 6%
app installation time: 12%
contacts read/write: 20%/12%

Table 5: Macrobenchmark results.

Macrobenchmark Name
(ms)

Original (with Opti-
mizing Backend)

TaintART

App Launch Time 348.2 370.3

App Installation Time 1680.5 1886.3

Contacts Read/Write 7.0/9538.5 8.4/9655.2

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 17 / 24



Evaluation – Microbenchmarks

Compiler microbenchmark: compilation time
80 built-in apps in AOSP project
19.9% overhead

0 20 40 60 80
0

1,000

2,000

3,000

336.067
403.064

Index of Built-in Apps

C
om

pi
la

tio
n

Ti
m

e
(m

ill
is

ec
on

ds
)

Original

TaintART

Figure: Comparison of compilation time.

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 18 / 24



Evaluation – Microbenchmarks

Compiler microbenchmark: instruction overhead
21% overhead in total
0.8% overhead only for memory-related instructions

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·107

I: 5,028,730, II: 5,159,454, III: 2379, IV: 1,906,759,

V: 747,014, VI: 61,898, VII: 132,760

I: 4,988,969, II: 2,747,897, III: 2379, IV: 1,909,696

V: 904,164, VI: 61,693, VII: 130,338

13,038,994

10,745,136

TaintART Compiler

Original Compiler

Number of Instructions (ARM)

I. Memory access instructions II. Data processing instructions III. Multiply instructions

IV.Branch/control instructions V. Barrel shifter instructions VI. VFP instructions

VII. Other instructions

Figure: Comparison of instruction numbers for different types.
Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 19 / 24



Evaluation – Microbenchmarks

Java microbenchmark
CaffeineMark 3.0

14% overhead overall
99.8% more scores compared to the legacy Dalvik environment

Sieve Loop Logic String Float Method Overall

0

25,000

50,000

75,000

100,000

125,000

150,000
49
,8

26
.5

10
1,

47
0.

4 12
4,

52
6.

2

25
,3

28
.2

38
,9

48
.3

39
,6

57
.8

53
,9

26
.7

49
,0

84
.1

56
,8

00
.2

11
0,

18
3.

4

26
,3

03
.8

35
,6

75
.7

34
,2

55
.8

46
,3

06
.9

Benchmark Item of CaffeineMark 3.0

C
af

fe
in

eM
ar

k
3.

0
Sc

or
e

Optimizing Compiler Backend

Quick Compiler Backend

Interpreter Only

TaintART

Dalvik VM (4.4)

Figure: CaffeineMark 3.0 Java microbenchmark.
Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 20 / 24



Evaluation – Others

Memory microbenchmark: 0.4%
IPC microbenchmark: 4%
Compatibility evaluation

0 5 10 15 20 25
0

5,000

10,000

15,000

20,000

25,000

Elapsed Time of Launching CaffeineMark (seconds)

M
em

or
y

U
sa

ge
of

C
af

fe
in

eM
ar

k
(k

B
)

ART (Optimizing Backend)

TaintART

Table 6: IPC Throughput Benchmark (10,000 pairs
of messages).

Macrobenchmark Name Original TaintART Overhead

Execution Time 2987ms 3117ms 4.35%

Memory (client) 51 572 kB 53 170 kB 3.10%

Memory (server) 38 812 kB 39 689 kB 2.26%

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 21 / 24



Summary

Tracking information flows
dynamic taint analysis for new Android RunTime
register-based and compiler instrumentation
evaluate in micro/macro benchmark

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 22 / 24



Thank you!

Thank you.

Question?

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 23 / 24



Backup Slides for TaintART – Taint Tag Storage

Taint tag spilling
the register allocator will temporarily store extra variables in the
main memory

Mingshen Sun (CUHK) TaintART @ CCS 2016 October 25, 2016 24 / 24


	Introduction to dynamic taint analysis
	TaintART: A Practical Multi-level Information-Flow Tracking System for Android RunTime
	Introduction to dynamic taint analysis system
	TaintART
	Background of Dalvik and ART
	System Design of TaintART
	Implementation & Case Study
	Evaluation by macro/micro benchmark

	Summary

