Proof of Being Forgotten

Verified Privacy Protection in Confidential Computing
Platform

Mingshen Sun, Hongbo Chen, Zhaofeng Chen, Kang L
Baidu
Open Confidential Computing Conference 2022

Coffee Incidents

.

Privacy Incidents

privacy
leftover

privacy
eaka

TEE’s Abilities and Inabilities

V' Attestation: guarantee identity of code

TEE
. Confidential v Isolation: prevent outside attackers
— s [

v' Encryption: protect data safety

TEE’s Abilities and Inabilities

__

e e e e e e e e e e e e e o e o

v Attestation: guarantee identity of code

TEE
Isolation: prevent-outside-attackers
T Confidential + Isolatio
B Computing —> cannot prevent data leakage
4 Encryption: protect-data-safety

—> cannot avoid secrets withheld

Proof of Being Forgotten

a principal regulates the code dealing with secrets Is verified so that secrets are
completely consumed and not revealed to any unauthorized party

v NO LEAKAGE v NO RESIDUE

Towards Proof of Being Forgotten
' Verify

Platform

Requirements Attestation

Proof assistant

Type System Dataflow

Constraints

Implementation

— e o e e e o e e e e e o e o e e e e e e o e e e e e e o e = e = =

PoBF Formal Definition

Definition 1.2 (Being Forgotten for Procedure). For a critical procedure p(.S), the Being

Forgotten predicate is defined as follows:
BF(p(S)) := —Leaked(p, S*) A —Residual(p, S*)

where Leaked and Residual are pre

iAtes and set S* rep%sents all values tainted by s € S.

No Leakage

PoBF-Compliant Requirements

BF(T) < /\ Restricted(p;(S), Z) A

p €T \
No Residue NS p/E\T CleanMoved(p;(S), Z) A / No Leakage

EndWithEncryption(T)

' Compliance

PoBF

Platform

Encrypted Input —— Enclave

— Encrypted Output
S

Formal Constraints

We restrict write to the zone when the procedure is running, and denote this rule as
Restricted(p(.5), Z). More specifically, the procedure can only write to this zone(WriteBounded)

and such zone cannot be read by other procedures(ReadExclusive):

Restricted(p(5), Z2) = WriteBounded(p(S), Z) A ReadExclusive(p(5), Z)

WriteBounded(p(S), Z) < Vop(argx) € p. op(arg*) = write(argx) = args € Z ‘ﬁ— . .
ReadExclusive(p(5), Z) < Vop(argx) € T'\ {p}. op(argx) = read(arg*) = args ¢ Z Dataflow AnaIySIS in MIRAI

WriteBounded:

For the residue, we enforce a safe cleaning at the end of p and denote as rule CleanMoved(p(.5), Z).
Zeros are written to all memory locations in Z other than the return value r, atter the execu-
tion of p(S) (Zeroized rule). Besides, SafeTransferred rule stipulates that the return value r,
must be passed to the next procedure intactly, and cannot be accessed by any other entities.

Formally speaking,

CleanMoved(p(S), Z) = Zeroized(p(.S), Z) A SafeTransferred(p(.S), Prest (Snext))
Zeroized(p(S), Z2) & VI € Z \ loc(ry). read(l) =0

—+ SafeTransferred(p(.S), Prewt (Snext)) < Tp € Snewt N

TypeState in Rust (Wop € T, arg € loc(r,). op = read(argx)

= op - pnea:t(snea:t))

SafeTransferred:

10

PoBF Formal Foundation

Restricted(p(S), Z) = —Leaked(p, 5%).

CleanMoved(p(S), Z) = —Residual(p, S*). \
\

PoBF
\ For each critical procedure p(.S), WriteBounded(p(S), Z) A Transferred(p(.S), Z) is true/
The task T ends with an ecryption procedure: EndWithEncryption(T') is true.

The implemention of Zeroize is correct: Zeroized(p(S), Z) is true.

Proof

Assistant

11

Memory Model

Enclave

Enclave Enclave

Return Value

Return Value Return Value

Secrets Secreid

Memory Memory : Memory

12

Towards Proof of Being Forgotten

Platform
Attestation

Static Analysis

Type System Dataflow

Implementation

|

A Verified Privacy Protection in Confidential

Computing Platform

Memory/Thread Safety

VY

__.) PoBF-Compliant ‘-——

Verified

Verified Type
System

Zone Allocator

Platform

7N

Static Dataflow

Verified

End with Encryption

Analysis

14

Example: Detect Secret Leakage by Static
Dataflow Analysis

No Leakage WriteBounded

Leakage Detected by MIRAI

let protected = ProtectedAssets: :new(» PoBF gtit:(talk) cargo mirat

;ecretidata, warning: unsatisfied precondition
tnput_key, --> src/main.rs:39:5
output_key, |

| safe_log(&protected.output_key.raw);

| NANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

safe_log(&protected.output_key.raw); note: related location
--> src/main.rs:93:5
safe_log(&"computation start.".as_bytes().to_vec()); |

j g
add_tag! (&protected, SecretTaint);

precondition!(does_not_have_tag!(itnput, SecretTaint));

| NNN

fn safe_log(input: &Vec::<u8>) { note: this warning originates in the macro precondition

- pregondition!(does_not_have_tag!(-mput, SecretTaint)); (in Nightly butilds, run with -Z macro-backtrace for more info)
println!("{}", String::from_utf8_lossy(input)); warning: “pobf (bin "pobf") generated 1 warning

Finished dev [unoptimized + debuginfo] target(s) in 0.54s

15

Example: Detect Secret Leakage by Static

Program Analysis

$ cat enclave/src/userfunc.rs
#![forbid(unsafe code)]

use crate::pobf_verifier::*;
pub fn vec_inc(input: Vec<u8>) -> Vec<u8> {
let step = 1;
println!("The step is {} in computation_enc", step);
let mut output = Vec::new();
for 1 in input.iter() {

output.push(i + step);
s

println!("after increasing, the 0th data is {}", output[0]);

output
Log secret data!

No Leakage WriteBounded

Leakage Detected by PoBF Verifier

$ cargo pobf-verify

INFO checking if the source code forbids “unsafe’

INFO checking unsafe code...

INFO - analyzing file: ./src/types/vecaes.rs...

INFO + unsafe code fobidden in ./src/types/vecaes.rs, clear.

INFO checking possible leakage through OCALLs...
PoBF Verifier found possible leakage.
The detailed explaination of this error type [vio-ocall] can be found
in the document.
: possible false verification condition
--> src/userfunc.rs:19:9

NANNNNNNNNNNNNNNNNNNNNNNN

|
| verify! (output[0] == 43);
|
|

19 println!("after increasing, the 0th data is {}", output[0]);

"no_leakage verification failed: 1 leakage(s) found.

Example: Restrict State Transition by
Typestate In Rust

invoke()

ProtectedAssets<Decrypted, Input> » ProtectedAssets<Decrypted, Output>

ProtectedAssets<Decrypted, Output> —22Y2Uy protectedAssets<Encrypted, Output>

impl ProtectedAssets<Decrypted, Input> {
pub fn invoke(self, fun: &dyn Fn(Vec<u8>) -> Vec<u8>) ->
ProtectedAssets<Decrypted, Output> {

ProtectedAssets {
data: self.data.invoke(fun),

input_key: self.input_key, decrypt() invoke() encrypt()
output_key: self.output_key, ' .

} :
} g No Residue

Encrypted
Input

) Encrypted\move()

impl ProtectedAssets<Decrypted, Output> {
pub fn encrypt(self) -> ProtectedAssets<Encrypted, Output> {
ProtectedAssets {

data: self.data.encrypt(&self.output_key), i SafeTransferred E drop()

thput_key: self.input_key,
output_key: self.output_key.zeroize(),

Proof of Being Forgotten

PoBF-Compliant Platform

v NO LEAKAGE Memory/Thread Safety Ownership Rules

Verified Type Static Dataflow
System Analysis

v NO RESIDUE Zone Allocator End with Encryption

Attestation

18

Summary

* Proof of Being Forgotten: a principal regulates the code dealing with secrets is
verified so that secrets are completely consumed and not revealed to any
unauthorized party.

 Two requirements of PoBF: No Leakage & No Residue

 Formal constraints to prove PoBF requirements.

* A concrete design of PoBF-compliant platform for general confidential computing.

* Verified privacy protection platform implementation: statically verified by the
Rust type system and dataflow analysis. With the remote attestation, end users can
trust the code of the platform.

 P4Cleanroom: our privacy-preserving computational biology platform with the
PoBF property.

19

Thanks!

__

Memory/Thread Safety Ownership Rules

v NO LEAKAGE C

v NO RESIDUE

5

C—T)":

o

2

O

q)]

@))

<<

(0))

o

3
NNV
N 7N

2,

=

il

O

Q

D

o)

S

>

)

Q

<<

23

(dp)
NI NIV

C Zone Allocator

__

22

Layout

Enclave

Return Value

Untrusted

No-Leakage

Enclave

Return Value

Secrets

Untrusted

23

No-Residue

Enclave

Return Value

Untrusted

FAQ

Side-channel and covert-channel?

covert-channel

We restrict write to the zone when the procedure is running, and denote this rule as
Restricted(p(S), Z). More specifically, the procedure can only write to this zone(WriteBounded)

and such zone cannot be read by other procedures(ReadExclusive):

AN SecretlIndependent(p(S))
Restricted(p(S), Z) = WriteBounded(p(S), Z) A ReadExclusive(p(5), Z)

WriteBounded(p(S), Z) < Vop(argx) € p. op(arg*) = write(arg*) = args € Z A NonInterterence(p(s))

ReadExclusive(p(S), Z2) < Yop(argx) € T\ {p}. op(argx) = read(arg*) = args ¢ Z

side-channel

24

Example: Typestate in Rust

No Residue SafeTransferred

pub trait InputKeyState {
type KeyState;

}

pub struct ProtectedAssets<S, T>
impl InputKeyState for Data<Encrypted, Input> { -

type KeyState = Sealed; Data<S, T>: InputKeyState,
} Data<S, T>: OutputKeyState,

S: EncryptionState,
impl InputKeyState for Data<Decrypted, Input> { T: IOState,

type KeyState = Invaluid;
} pub data: Data<S, T>,
pub input_key: Key<<Data<S, T> as InputKeyState>::KeyState>,

impl InputKeyState for Data<Decrypted, Output> { pub output_key: Key<<Data<S, T> as OutputKeyState>::KeyState>,
type KeyState = Invaluid;

}

impl InputKeyState for Data<Encrypted, Output> {
type KeyState = Invalid;

}

Threat Model & Assumptions

 TEE: not vulnerable

* enclave: single-threaded execution

* Rust type system and verifier: sound
e encryption/decryption: no side effect

e side/covert-channel: out of scope

20

Why

For Data Providers

 Data containing secrets should be handled properly in the enclave

e Service providers usually claims that user data will not be stored or used In
other places.

» However, they have no way to confirm what is said by the service provider.

 They would like a proof that their data is really deleted(consumed) and not
leaked.

27

P4Cleanroom: A Verified Platform Towards PoBF

| HEN
L ST
= intel :
ml SGX | m
Gene Owner . -j

P4Cleanroom is a confidential cloud service for hosting computational biology algorithms as SaaS services on the
cloud. Computational biology researchers can publish their algorithms on P4Cleanroom as a Saas service to
customers, such as researchers in pharmaceutical companies and health care institutes.

https://p4cleanroom.com

28

https://p4cleanroom.com

