
Mingshen Sun, Hongbo Chen, Zhaofeng Chen, Kang Li

Baidu

Open Confidential Computing Conference 2022

Proof of Being Forgotten
Verified Privacy Protection in Confidential Computing
Platform

Coffee Incidents

2

Privacy Incidents

3

enclave

privacy
leakage

privacy
leftover

enclave

TEE’s Abilities and Inabilities

✓Attestation: guarantee identity of code

✓ Isolation: prevent outside attackers

✓Encryption: protect data safety

TEE

Confidential
Computing

Services

secrets

result

4

TEE’s Abilities and Inabilities

5

TEE

Confidential
Computing

Services

secrets

result

TEE doesn't not guarantee no data leakage and secrets withheld

✓Attestation: guarantee identity of code

✦ Isolation: prevent outside attackers

✦ Encryption: protect data safety

⇨cannot prevent data leakage

⇨cannot avoid secrets withheld

✓ NO LEAKAGE ✓ NO RESIDUE

a principal regulates the code dealing with secrets is verified so that secrets are
completely consumed and not revealed to any unauthorized party

Proof of Being Forgotten

ImplementationDesign

Towards Proof of Being Forgotten

Constraints

Proof assistant

PoBF

Rust Verifier

DataflowType System

Platform

Static Analysis

Attestation

Prove Verify

7

Model

Requirements

PoBF Formal Definition

No Leakage No Residue

Baidu XLab; PoBF 2

1 Definitions

Conventions:

• mathsf/textsf, e.g. BF, Leaked, Residual, for predicates (some are also rules)

• capital letters, e.g. S, S⇤, T , for sets

• mathcal, e.g. Z, for accessible locations on the machine, and they are also sets.

• lower case letters/words, e.g. p, loc, for procedures/functions/operations, or elements

of sets.

Definition 1.1 (Task and Procedure). A task T is composed of a series of procedure calls

{p1, p2, . . . , pi, . . . }. We define a p as a critical procedure when p(S) 2 T deals with secrets

set S and returns value rp.

Definition 1.2 (Being Forgotten for Procedure). For a critical procedure p(S), the Being

Forgotten predicate is defined as follows:

BF(p(S)) := ¬Leaked(p, S⇤) ^ ¬Residual(p, S⇤)

where Leaked and Residual are predicates and set S⇤ represents all values tainted by s 2 S.

Definition 1.3 (Leaked). Leaked(p, S⇤) evaluates to true when s⇤ 2 S⇤ is accessible to

procedures other than p and procedures invoked by p while p is being executed.

Definition 1.4 (Residual). Residual(p, S⇤) evaluates to true when s⇤ 2 S⇤ \ {rp} still exists

after the execution of p.

2 Our Framework

In the context of Trusted Execution Environment (TEE), we define a specific region called

zone (Z) which are the resources can be modified by a procedure p(S) within the enclave,

including RAM and registers. We aim to refine from the aforementioned definitions a series

of logical constraints to prove BF holds.

Our framework is designed for single-threaded tasks. However, it can be generalized to

multi-threaded programs.

2.1 For Leaked

We restrict write to the zone when the procedure is running, and denote this rule as

Restricted(p(S),Z). More specifically, the procedure can only write to this zone and such

zone cannot be read by other procedures:

Restricted(p(S),Z) = WriteOnly(p(S),Z) ^ ReadExclusive(p(S),Z)

WriteOnly(p(S),Z) , 8op(arg⇤) 2 p. op(arg⇤) = write(arg⇤)) args 2 Z

ReadExclusive(p(S),Z) , 8op(arg⇤) 2 T \ {p}. op(arg⇤) = read(arg⇤)) args /2 Z

8

PoBF-Compliant Requirements
Baidu XLab; PoBF 4

Theorem 2.5 (Being Forgotten for Task).

BF(T) ,
^

pi2T

Restricted(pi(S),Z) ^

^

pi2T

CleanMoved(pi(S),Z) ^

EndWithEncryption(T)

We can now convert the Prove of Being Forgotten to a proof of the two rules for each critical

procedure and the EndWithEencryption rule. Especially for a single-threaded task, we are

going to prove:

• For each critical procedure p(S), WriteOnly(p(S),Z) ^ Transferred(p(S),Z) is true.

• The task T ends with an ecryption procedure: EndWithEncryption(T) is true.

• The implemention of Zeroize is correct: Zeroized(p(S),Z) is true.

We say a task T has the Proof of Being Forgotten (PoBF) property when BF(T) evaluates

to true, i.e., BF holds for T .

We exclude the covert- and side-channels from the leakage just for simplicity. A non-

interference rule could also be added to the definition of Being Forgotten to satisfy a stronger

threat model.

No LeakageNo Residue

PoBF

Platform

Encrypted Input

Keys
Encrypted Output

Enclave

Decryption EncryptionComputation

Compliance

9

Formal Constraints

10

Baidu XLab; PoBF 3

Theorem 2.1. Restricted(p(S),Z)) ¬Leaked(p, S⇤).

Theorem 2.2. loc(rp) ⇢ Z.

Where loc(i) returns a set of locations storing i. Obviously, for a single-threaded task,

ReadExclusive(p(S),Z) is true.

2.2 For Residual

For the residue, we enforce a safe cleaning at the end of p and denote as rule CleanMoved(p(S),Z).

Zeros are written to all memory locations in Z other than the return value rp after the execu-

tion of p(S) (Zeroized rule). Besides, SafeTransferred rule stipulates that the return value rp

must be passed to the next procedure intactly, and cannot be accessed by any other entities.

Formally speaking,

CleanMoved(p(S),Z) = Zeroized(p(S),Z) ^ SafeTransferred(p(S), pnext(Snext))

Zeroized(p(S),Z) , 8l 2 Z \ loc(rp). read(l) = 0

SafeTransferred(p(S), pnext(Snext)) , rp 2 Snext ^

(8op 2 T, arg 2 loc(rp). op = read(arg⇤)

) op 2 pnext(Snext))

Where pnext denotes the next procedure after p and Snext denotes the secret inputs for pnext.

Theorem 2.3. CleanMoved(p(S),Z)) ¬Residual(p, S⇤).

Theorem 2.4. For a single-threaded program, if pnext is executed right after p0(S)(i.e.

there is no operations between p and pnext) and the zone Z remains unchanged, then

SafeTransferred(p(S), pnext(Snext)) is satisfied.

We can execute a Zeroize procedure right after each p(S), and regard p0(S) = p(S) ::

Zeroize(p(S),Z) to make sure that critical procedures end with Zeroize. Besides, we can

also satisfy SafeTransferred by guaranteeing that critical procedures are executed in sequence.

Zeroize can be designed as a function which is proved to operate correctly, so we only need

to prove SafeTransferred per procedure for CleanMoved(p(S),Z).

2.3 Declassification

As we can see, for the last procedure dealing with secrets plast, there is no “next” procedure.

So we assume SafeTransferred is always satisfied for plast.

However, this doesn’t mean we allow arbitrary last procedure. In our design, the last proce-

dure in the task is always an encryption procedure which encrypts the rp from the previous

one, and the encryption operation is regarded as Being Forgotten conceptually. We denote

such rule as EndWithEncryption.

2.4 Summary

To sum up, for a task T , we can define BF (T) in the following way:

Baidu XLab; PoBF 2

1 Definitions

Conventions:

• mathsf/textsf, e.g. BF, Leaked, Residual, for predicates (some are also rules)

• capital letters, e.g. S, S⇤, T , for sets

• mathcal, e.g. Z, for accessible locations on the machine, and they are also sets.

• lower case letters/words, e.g. p, loc, for procedures/functions/operations, or elements

of sets.

Definition 1.1 (Task and Procedure). A task T is composed of a series of procedure calls

{p1, p2, . . . , pi, . . . }. We define a p as a critical procedure when p(S) 2 T deals with secrets

set S and returns value rp.

Definition 1.2 (Being Forgotten for Procedure). For a critical procedure p(S), the Being

Forgotten predicate is defined as follows:

BF(p(S)) := ¬Leaked(p, S⇤) ^ ¬Residual(p, S⇤)

where Leaked and Residual are predicates and set S⇤ represents all values tainted by s 2 S.

Definition 1.3 (Leaked). Leaked(p, S⇤) evaluates to true when s⇤ 2 S⇤ is accessible to

procedures other than p and procedures invoked by p while p is being executed.

Definition 1.4 (Residual). Residual(p, S⇤) evaluates to true when s⇤ 2 S⇤ \ {rp} still exists

after the execution of p.

2 Our Framework

In the context of Trusted Execution Environment (TEE), we define a specific region called

zone (Z) which are the resources can be modified by a procedure p(S) within the enclave,

including RAM and registers. We aim to refine from the aforementioned definitions a series

of logical constraints to prove BF holds.

Our framework is designed for single-threaded tasks. However, it can be generalized to

multi-threaded programs.

2.1 For Leaked

We restrict write to the zone when the procedure is running, and denote this rule as

Restricted(p(S),Z). More specifically, the procedure can only write to this zone(WriteBounded)

and such zone cannot be read by other procedures(ReadExclusive):

Restricted(p(S),Z) = WriteBounded(p(S),Z) ^ ReadExclusive(p(S),Z)

WriteBounded(p(S),Z) , 8op(arg⇤) 2 p. op(arg⇤) = write(arg⇤)) args 2 Z

ReadExclusive(p(S),Z) , 8op(arg⇤) 2 T \ {p}. op(arg⇤) = read(arg⇤)) args /2 Z

WriteBounded:

Dataflow Analysis in MIRAI

SafeTransferred:

Typestate in Rust

PoBF Formal Foundation

11

Baidu XLab; PoBF 3

Theorem 2.1. Restricted(p(S),Z)) ¬Leaked(p, S⇤).

Theorem 2.2. loc(rp) ⇢ Z.

Where loc(i) returns a set of locations storing i. Obviously, for a single-threaded task,

ReadExclusive(p(S),Z) is true.

2.2 For Residual

For the residue, we enforce a safe cleaning (zeroize memory) at the end of p and denote as

rule CleanMoved(p(S),Z) where zero are written to all memory locations in Z other than the

return value rp after the execution of p(S). Besides, the return value rp must be passed to the

next procedure intactly, and cannot be accessed by any other entities. Formally speaking,

CleanMoved(p(S),Z) = Zeroized(p(S),Z) ^ Transferred(p(S), pnext(Snext))

Zeroized(p(S),Z) , 8l 2 Z \ loc(rp). read(l) = 0

Transferred(p(S), pnext(Snext)) , rp 2 Snext ^

(8op 2 T, arg 2 loc(rp). op = read(arg⇤)

) op 2 pnext(Snext))

Where pnext denotes the next procedure after p and Snext denotes the secret inputs for pnext.

Theorem 2.3. CleanMoved(p(S),Z)) ¬Residual(p, S⇤).

Theorem 2.4. For a single-threaded program, if pnext is executed right after p0(S)(i.e.

there is no operations between p and pnext) and the zone Z remains unchanged, then

Transferred(p(S), pnext(Snext)) is satisfied.

We can execute a Zeroize procedure right after each p(S), and regard p0(S) = p(S) ::

Zeroize(p(S),Z) to make sure that critical procedures end with Zeroize. Besides, we can

also satisfy Transferred by guaranteeing that critical procedures are executed in sequence.

Zeroize can be designed as a function which is proved to operate correctly, so we only need

to prove Transferred per procedure for CleanMoved(p(S),Z).

2.3 Declassification

As we can see, for the last procedure dealing with secrets plast, there is no “next” procedure.

So we assume Transferred is always satisfied for plast.

However, this doesn’t mean we allow arbitrary last procedure. In our design, the last proce-

dure in the task is always an encryption procedure which encrypts the rp from the previous

one, and the encryption operation is regarded as Being Forgotten conceptually. We denote

such rule as EndWithEncryption.

2.4 Summary

To sum up, for a task T , we can define BF (T) in the following way:

Baidu XLab; PoBF 3

Theorem 2.1. Restricted(p(S),Z)) ¬Leaked(p, S⇤).

Theorem 2.2. loc(rp) ⇢ Z.

Where loc(i) returns a set of locations storing i. Obviously, for a single-threaded task,

ReadExclusive(p(S),Z) is true.

2.2 For Residual

For the residue, we enforce a safe cleaning (zeroize memory) at the end of p and denote as

rule CleanMoved(p(S),Z) where zero are written to all memory locations in Z other than the

return value rp after the execution of p(S). Besides, the return value rp must be passed to the

next procedure intactly, and cannot be accessed by any other entities. Formally speaking,

CleanMoved(p(S),Z) = Zeroized(p(S),Z) ^ Transferred(p(S), pnext(Snext))

Zeroized(p(S),Z) , 8l 2 Z \ loc(rp). read(l) = 0

Transferred(p(S), pnext(Snext)) , rp 2 Snext ^

(8op 2 T, arg 2 loc(rp). op = read(arg⇤)

) op 2 pnext(Snext))

Where pnext denotes the next procedure after p and Snext denotes the secret inputs for pnext.

Theorem 2.3. CleanMoved(p(S),Z)) ¬Residual(p, S⇤).

Theorem 2.4. For a single-threaded program, if pnext is executed right after p0(S)(i.e.

there is no operations between p and pnext) and the zone Z remains unchanged, then

Transferred(p(S), pnext(Snext)) is satisfied.

We can execute a Zeroize procedure right after each p(S), and regard p0(S) = p(S) ::

Zeroize(p(S),Z) to make sure that critical procedures end with Zeroize. Besides, we can

also satisfy Transferred by guaranteeing that critical procedures are executed in sequence.

Zeroize can be designed as a function which is proved to operate correctly, so we only need

to prove Transferred per procedure for CleanMoved(p(S),Z).

2.3 Declassification

As we can see, for the last procedure dealing with secrets plast, there is no “next” procedure.

So we assume Transferred is always satisfied for plast.

However, this doesn’t mean we allow arbitrary last procedure. In our design, the last proce-

dure in the task is always an encryption procedure which encrypts the rp from the previous

one, and the encryption operation is regarded as Being Forgotten conceptually. We denote

such rule as EndWithEncryption.

2.4 Summary

To sum up, for a task T , we can define BF (T) in the following way:

PoBF

Generalized

Baidu XLab; PoBF 4

Theorem 2.5 (Being Forgotten for Task).

BF(T) ,
^

pi2T

Restricted(pi(S),Z) ^

^

pi2T

CleanMoved(pi(S),Z) ^

EndWithEncryption(T)

We can now convert the Prove of Being Forgotten to a proof of the two rules for each critical

procedure and the EndWithEencryption rule. Especially for a single-threaded task, we are

going to prove:

• For each critical procedure p(S), WriteBounded(p(S),Z)^Transferred(p(S),Z) is true.

• The task T ends with an ecryption procedure: EndWithEncryption(T) is true.

• The implemention of Zeroize is correct: Zeroized(p(S),Z) is true.

We say a task T has the Proof of Being Forgotten (PoBF) property when BF(T) evaluates

to true, i.e., BF holds for T .

We exclude the covert- and side-channels from the leakage just for simplicity. A non-

interference rule could also be added to the definition of Being Forgotten to satisfy a stronger

threat model.

Proof

Assistant

Memory Model

Memory

Enclave

Zone

Return Value

λ

Memory

Enclave

Zone

Return Value

λ
Secrets

No Leakage

Memory

Enclave

Zone

Return Value

λ
Secrets

No Residue

12

ImplementationDesign

Towards Proof of Being Forgotten

Constraints

Proof assistant

PoBF

Rust Verifier

DataflowType System

Platform

Static Analysis

Attestation

Prove Verify

13

Model

Requirements

A Verified Privacy Protection in Confidential
Computing Platform

Memory/Thread Safety

Zone Allocator
Verified Type

System

Ownership Rules

Static Dataflow
Analysis

MIRAI

Verified

14

End with Encryption

Verified

PoBF-Compliant
Platform

Example: Detect Secret Leakage by Static
Dataflow Analysis

Leakage Detected by MIRAI

Tag

Log

Verify

Log

15

No Leakage WriteBounded

Example: Detect Secret Leakage by Static
Program Analysis

Leakage Detected by PoBF Verifier

16

No Leakage WriteBounded

Log secret data!

Example: Restrict State Transition by
Typestate in Rust

17

ProtectedAssets<Decrypted, Input> ProtectedAssets<Decrypted, Output>

ProtectedAssets<Decrypted, Output> ProtectedAssets<Encrypted, Output>

invoke()

encrypt()

No Residue

SafeTransferred

Proof of Being Forgotten

✓ NO LEAKAGE

✓ NO RESIDUE

Memory/Thread Safety

Zone Allocator

Verified Type
System

Ownership Rules

Static Dataflow
Analysis

End with Encryption

Attestation

PoBF-Compliant Platform

18

Summary
• Proof of Being Forgotten: a principal regulates the code dealing with secrets is

verified so that secrets are completely consumed and not revealed to any
unauthorized party.

• Two requirements of PoBF: No Leakage & No Residue

• Formal constraints to prove PoBF requirements.

• A concrete design of PoBF-compliant platform for general confidential computing.

• Verified privacy protection platform implementation: statically verified by the
Rust type system and dataflow analysis. With the remote attestation, end users can
trust the code of the platform.

• P4Cleanroom: our privacy-preserving computational biology platform with the
PoBF property.

19

Thanks!

Backup

21

✓ NO LEAKAGE

✓ NO RESIDUE

Memory/Thread Safety

Zone Allocator

Verified Type System

Ownership Rules

Static Dataflow Analysis

End with Encryption

Attestation

22

Untrusted

Enclave

Zone

Return Value

λ

Untrusted

Enclave

Zone

Return Value

λ
Secrets

No-Leakage

Untrusted

Enclave

Zone

Return Value

λ
Secrets

No-Residue

23

Layout

FAQ
Side-channel and covert-channel?

24

Baidu XLab; PoBF 2

1 Definitions

Conventions:

• mathsf/textsf, e.g. BF, Leaked, Residual, for predicates (some are also rules)

• capital letters, e.g. S, S⇤, T , for sets

• mathcal, e.g. Z, for accessible locations on the machine, and they are also sets.

• lower case letters/words, e.g. p, loc, for procedures/functions/operations, or elements

of sets.

Definition 1.1 (Task and Procedure). A task T is composed of a series of procedure calls

{p1, p2, . . . , pi, . . . }. We define a p as a critical procedure when p(S) 2 T deals with secrets

set S and returns value rp.

Definition 1.2 (Being Forgotten for Procedure). For a critical procedure p(S), the Being

Forgotten predicate is defined as follows:

BF(p(S)) := ¬Leaked(p, S⇤) ^ ¬Residual(p, S⇤)

where Leaked and Residual are predicates and set S⇤ represents all values tainted by s 2 S.

Definition 1.3 (Leaked). Leaked(p, S⇤) evaluates to true when s⇤ 2 S⇤ is accessible to

procedures other than p and procedures invoked by p while p is being executed.

Definition 1.4 (Residual). Residual(p, S⇤) evaluates to true when s⇤ 2 S⇤ \ {rp} still exists

after the execution of p.

2 Our Framework

In the context of Trusted Execution Environment (TEE), we define a specific region called

zone (Z) which are the resources can be modified by a procedure p(S) within the enclave,

including RAM and registers. We aim to refine from the aforementioned definitions a series

of logical constraints to prove BF holds.

Our framework is designed for single-threaded tasks. However, it can be generalized to

multi-threaded programs.

2.1 For Leaked

We restrict write to the zone when the procedure is running, and denote this rule as

Restricted(p(S),Z). More specifically, the procedure can only write to this zone(WriteBounded)

and such zone cannot be read by other procedures(ReadExclusive):

Restricted(p(S),Z) = WriteBounded(p(S),Z) ^ ReadExclusive(p(S),Z)

WriteBounded(p(S),Z) , 8op(arg⇤) 2 p. op(arg⇤) = write(arg⇤)) args 2 Z

ReadExclusive(p(S),Z) , 8op(arg⇤) 2 T \ {p}. op(arg⇤) = read(arg⇤)) args /2 Z

∧ SecretIndependent(p(S))

∧ NonInterference(p(S))

covert-channel

side-channel

Example: Typestate in Rust

25

No Residue SafeTransferred

Threat Model & Assumptions

• TEE: not vulnerable

• enclave: single-threaded execution

•Rust type system and verifier: sound

• encryption/decryption: no side effect

• side/covert-channel: out of scope

26

Why
For Data Providers

• Data containing secrets should be handled properly in the enclave

• Service providers usually claims that user data will not be stored or used in
other places.

• However, they have no way to confirm what is said by the service provider.

• They would like a proof that their data is really deleted(consumed) and not
leaked.

27

P4Cleanroom: A Verified Platform Towards PoBF

https://p4cleanroom.com
28

P4Cleanroom is a confidential cloud service for hosting computational biology algorithms as SaaS services on the
cloud. Computational biology researchers can publish their algorithms on P4Cleanroom as a SaaS service to
customers, such as researchers in pharmaceutical companies and health care institutes.

https://p4cleanroom.com

