
Linux From Scratch in Rust
Mingshen Sun

2019.04.20
RustCon Asia, Beijing

Intro
• Linux From Scratch (LFS) is a project that provides you

with step-by-step instructions for building you own
custom Linux system, entirely from source code.

• Why/Can/How we do LFS entirely in Rust?

!2

whoami
• Senior Security Research in Baidu X-Lab, Baidu USA

• System security, mobile security, IoT security

• MesaLock Linux, MesaPy, Rust OP-TEE TrustZone SDK,
TaintART, Pass for iOS, etc.

• mssun @ GitHub | https://mssun.me

!3

https://mssun.me

Why LFS in Rust?
• Cause we are in a Rust conference! Yes, it's fun!

!4

Why LFS in Rust?
• Cause we are in a Rust conference! Yes, it's fun!

• Memory-safety in userspace

• CVE-2017-13089 wget: Stack-based buffer overflow in HTTP protocol handling

• A stack-based buffer overflow when processing chunked, encoded HTTP responses
was found in wget. By tricking an unsuspecting user into connecting to a malicious
HTTP server, an attacker could exploit this flaw to potentially execute arbitrary code.

• https://bugzilla.redhat.com/show_bug.cgi?id=1505444

• Proof-of-concept: https://github.com/r1b/CVE-2017-13089

!5

https://bugzilla.redhat.com/show_bug.cgi?id=1505444
https://github.com/r1b/CVE-2017-13089

Why LFS in Rust?
• Cause we are in a Rust conference!

• Memory-safety in userspace

• Capabilities and "pitfall" of system programming in
Rust

!6

Linux Userspace

!7

Linux
Kernel

Shell

Core
utilities

Network
utilities

Daemon manager

DNS Daemon

File manager

Time manager

Package
manager

OTA
upgrade

Login
Utilities

Security of Linux Userspace

!8

Attacker

Linux
Kernel

Shell

Core
utilities

Network
utilities

Daemon manager

DNS Daemon

File manager

Time manager

Package
manager

OTA
upgrade

Login
Utilities

Linux Distros
• A Linux distribution (often abbreviated as distro) is

an operating system made from a software collection,
which is based upon the Linux kernel and, often,
a package management system.

• Server: CentOS, Federa, RedHat, Debian

• Desktop: Ubuntu

• Mobile: Android

• Embedded: OpenWRT, Yocto

• Enthusiast: Arch Linux, Gentoo

• Misc: ChromeOS, Alpine Linux

Security and Safety?
•Gentoo Hardened: enables several risk-

mitigating options in the toolchain, supports
PaX, grSecurity, SELinux, TPE and more.

•Kernel hardening patches
•Safety? No.
•User space? GNU.

!9

Basic Components of LFS
in Rust

• bootloader

• Linux kernel

• init

• getty

• login

• iproute2

• coreutils

• syslinux

• Linux 4.9.58

• minit

• mgetty

• mlogin

• giproute2

• uutils-coreutils

MesaBox

MesaLock
Linux

!10

MesaBox
• MesaBox is a collection of core system utilities written in

Rust for Unix-like systems.

• Like the well-known BusyBox and Toybox sets of utilities
popular on embedded devices, MesaBox seeks to
provide a fully functioning command-line environment.

!11

Status
Utility Type Status

arch GNU Complete

base32 GNU Complete

base64 GNU Complete

yes GNU Complete

getty Login Simple Version

tar LSB Beginning Stages

ping Networking Simple Version

cat POSIX/GNU Complete

chmod POSIX/GNU Mostly Complete (missing --reference)

head POSIX/GNU Complete

echo POSIX Complete

init POSIX Simple Version

sh POSIX Significant Progress

sleep POSIX Complete
!12

Add New Tools?

const NAME: &str = "dummy";
pub const DESCRIPTION: &str = "A dummy utility to demonstrate the framework";

type DummyResult<T> = ::std::result::Result<T, DummyError>;

#[derive(Fail, Debug)]
enum DummyError {
 #[fail(display = "oh no, something wrong")]
 SomethingWrong
}

Name and description

Use failure for error handling

!13

Add New Tools?
fn create_app() -> App<'static, 'static> {
 util_app!(NAME)
 .arg(Arg::with_name("verbose")
 .short("v")
 .long("verbose")
 .help("Say hello in verbose mode"))
}

pub fn execute<S, T>(setup: &mut S, args: T) -> Result<()>
where
 S: UtilSetup,
 T: ArgsIter,
{
 let app = create_app();
 let matches = app.get_matches_from_safe(args)?;
 let options = DummyOptions::from_matches(&matches);
 let output = setup.output();
 let mut output = output.lock()?;
 let mut dummyer = Dummyer::new(output);
 dummyer.dummy(&options)?;
 Ok(())
}

clap for command line
argument parsing

start the tool with input
arguments

!14

One more interesting feature in MesaBox

• It can be used as a library.

Use "head" to handle TcpStream.

!15

• brotli: compression tool written in Rust

• busybox: busybox tool set for testing only

• exa: replacement for ls written in Rust

• fd-find: simple, fast and user-friendly alternative to find

• filesystem: base filesystem layout

• gcc-libs: GCC library, only libgcc_s.so is used

• giproute2: ip tool written in Go

• glibc: glibc library

• init: init script

• ion-shell: shell written in Rust

• linux: Linux kernel

Packages of MesaLock Linux

• mesalock-demo: some demo projects

• mgetty: getty written in Rust

• micro: modern and intuitive terminal-based text editor in written Go

• minit: init written in Rust

• ripgrep: ripgrep combines the usability of The Silver Searcher with
the raw speed of grep, written in Rust

• syslinux: bootloader

• tokei: count your code, quickly, in Rust

• tzdata: timezone data

• uutils-coreutils: cross-platform Rust rewrite of the GNU
coreutils

• uutils-findutils: rust implementation of findutils

• xi-core: a modern editor with a backend written in Rust

• xi-tui: a tui frontend for Xi

Packages of MesaLock Linux

Add New Packages?

• build.yml
• name, version, description, license,

url, skip_check
• source, prepare, build, install
• mkpkg will automatically build and

package tools

!18

Rust in System Programming

• The nix library is very useful.

• unistd.h, mount.h, fcntl.h, stdlib.h

• handle PTY, network interface, users/groups, ioctl,
mount, kmod

• Signal in Rust is unsafe.

• SIGUSR1, SIGUSR2, SIGTERM, SIGQUIT,
SIGINT, SIGHUP, SIGTSTP, SIGSTOP...

!19

Rust in System Programming

• Rust standard library only provides APIs with high-level
abstraction.

• std::net v.s. socket2/net2 v.s. libpnet v.s. libc

• You have to use libc in the end.

!20

Rust in System Programming

• Handling string for CLI in Rust is very difficult.

• String, &str

• CString, &CStr

• OsString, &OsStr

• Low-level system operation in Rust is very difficult.

• E.g., netlink: used to transfer information between the
kernel and user-space processes.

!21

Rust in System Programming

• Testing and code coverage in Rust are non-trivial tasks.

• Integration test framework for CLI: assert_cmd, assert_fs

• tarpaulin: a code coverage reporting tool for the Cargo build
system

• gcov: a source code coverage analysis and statement-by-
statement profiling tool

ptrace-based code
coverage profiling tool

llvm-gcov-based
code coverage profiling
tool

!22

Quick Start
$ docker run -it mesalocklinux/mesalock-linux

• Live ISO

• Docker image

• rootfs

• x86_64, arm in the near future

Contributing
• https://github.com/mesalock-linux/mesalock-distro

• You can get involved in various forms:

• Try to use MesaLock Linux, report issue, enhancement suggestions, etc

• Contribute: optimize development process, improve documents,
closing issues, etc

• Contribute to core packages: improving minit, mgetty, giproute2, etc

• Writing applications using memory safe programming languages like
Rust/Go, and joining the packages

• Auditing source code of the projects and related packages

• You are welcome to send pull requests and report issues on GitHub.

https://github.com/mesalock-linux/mesalock-distro

Thank you!

