
Linux From Scratch in Rust
Mingshen Sun

2019.04.20
RustCon Asia, Beijing



Intro
• Linux From Scratch (LFS) is a project that provides you 

with step-by-step instructions for building you own 
custom Linux system, entirely from source code.


• Why/Can/How we do LFS entirely in Rust?
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whoami
• Senior Security Research in Baidu X-Lab, Baidu USA


• System security, mobile security, IoT security


• MesaLock Linux, MesaPy, Rust OP-TEE TrustZone SDK, 
TaintART, Pass for iOS, etc.


• mssun @ GitHub | https://mssun.me
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https://mssun.me


Why LFS in Rust?
• Cause we are in a Rust conference! Yes, it's fun!
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Why LFS in Rust?
• Cause we are in a Rust conference! Yes, it's fun!


• Memory-safety in userspace

• CVE-2017-13089 wget: Stack-based buffer overflow in HTTP protocol handling


• A stack-based buffer overflow when processing chunked, encoded HTTP responses 
was found in wget. By tricking an unsuspecting user into connecting to a malicious 
HTTP server, an attacker could exploit this flaw to potentially execute arbitrary code.


• https://bugzilla.redhat.com/show_bug.cgi?id=1505444


• Proof-of-concept: https://github.com/r1b/CVE-2017-13089
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Why LFS in Rust?
• Cause we are in a Rust conference! 

• Memory-safety in userspace


• Capabilities and "pitfall" of system programming in 
Rust
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Linux Userspace
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Security of Linux Userspace
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Linux Distros
• A Linux distribution (often abbreviated as distro) is 

an operating system made from a software collection, 
which is based upon the Linux kernel and, often, 
a package management system. 

• Server: CentOS, Federa, RedHat, Debian


• Desktop: Ubuntu


• Mobile: Android


• Embedded: OpenWRT, Yocto


• Enthusiast: Arch Linux, Gentoo


• Misc: ChromeOS, Alpine Linux

Security and Safety? 
•Gentoo Hardened: enables several risk-

mitigating options in the toolchain, supports 
PaX, grSecurity, SELinux, TPE and more. 

•Kernel hardening patches 
•Safety? No. 
•User space? GNU.

!9



Basic Components of LFS 
in Rust

• bootloader


• Linux kernel


• init


• getty


• login


• iproute2


• coreutils

• syslinux


• Linux 4.9.58


• minit


• mgetty


• mlogin


• giproute2


• uutils-coreutils

MesaBox

MesaLock 
Linux
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MesaBox
• MesaBox is a collection of core system utilities written in 

Rust for Unix-like systems.


• Like the well-known BusyBox and Toybox sets of utilities 
popular on embedded devices, MesaBox seeks to 
provide a fully functioning command-line environment.
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Status
Utility Type Status

arch GNU Complete

base32 GNU Complete

base64 GNU Complete

yes GNU Complete

getty Login Simple Version

tar LSB Beginning Stages

ping Networking Simple Version

cat POSIX/GNU Complete

chmod POSIX/GNU Mostly Complete (missing --reference)

head POSIX/GNU Complete

echo POSIX Complete

init POSIX Simple Version

sh POSIX Significant Progress

sleep POSIX Complete
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Add New Tools?

const NAME: &str = "dummy"; 
pub const DESCRIPTION: &str = "A dummy utility to demonstrate the framework"; 

type DummyResult<T> = ::std::result::Result<T, DummyError>; 

#[derive(Fail, Debug)] 
enum DummyError { 
    #[fail(display = "oh no, something wrong")] 
    SomethingWrong 
}

Name and description

Use failure for error handling
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Add New Tools?
fn create_app() -> App<'static, 'static> { 
    util_app!(NAME) 
        .arg(Arg::with_name("verbose") 
        .short("v") 
        .long("verbose") 
        .help("Say hello in verbose mode")) 
} 

pub fn execute<S, T>(setup: &mut S, args: T) -> Result<()> 
where 
    S: UtilSetup, 
    T: ArgsIter, 
{ 
    let app = create_app(); 
    let matches = app.get_matches_from_safe(args)?; 
    let options = DummyOptions::from_matches(&matches); 
    let output = setup.output(); 
    let mut output = output.lock()?; 
    let mut dummyer = Dummyer::new(output); 
    dummyer.dummy(&options)?; 
    Ok(()) 
}

clap for command line 
argument parsing

start the tool with input 
arguments
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One more interesting feature in MesaBox

• It can be used as a library.

Use "head" to handle TcpStream.
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• brotli: compression tool written in Rust


• busybox: busybox tool set for testing only


• exa: replacement for ls written in Rust


• fd-find: simple, fast and user-friendly alternative to find


• filesystem: base filesystem layout


• gcc-libs: GCC library, only libgcc_s.so is used


• giproute2: ip tool written in Go


• glibc: glibc library


• init: init script


• ion-shell: shell written in Rust


• linux: Linux kernel

Packages of MesaLock Linux



• mesalock-demo: some demo projects  


• mgetty: getty written in Rust


• micro: modern and intuitive terminal-based text editor in written Go


• minit: init written in Rust


• ripgrep: ripgrep combines the usability of The Silver Searcher with 
the raw speed of grep, written in Rust


• syslinux: bootloader


• tokei: count your code, quickly, in Rust


• tzdata: timezone data


• uutils-coreutils: cross-platform Rust rewrite of the GNU 
coreutils


• uutils-findutils: rust implementation of findutils


• xi-core: a modern editor with a backend written in Rust


• xi-tui: a tui frontend for Xi

Packages of MesaLock Linux



Add New Packages?

• build.yml 
• name, version, description, license, 

url, skip_check 
• source, prepare, build, install 
• mkpkg will automatically build and 

package tools
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Rust in System Programming

• The nix library is very useful. 

• unistd.h, mount.h, fcntl.h, stdlib.h


• handle PTY, network interface, users/groups, ioctl, 
mount, kmod


• Signal in Rust is unsafe. 

• SIGUSR1, SIGUSR2, SIGTERM, SIGQUIT, 
SIGINT, SIGHUP, SIGTSTP, SIGSTOP...
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Rust in System Programming

• Rust standard library only provides APIs with high-level 
abstraction. 

• std::net v.s. socket2/net2 v.s. libpnet v.s. libc 

• You have to use libc in the end.
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Rust in System Programming

• Handling string for CLI in Rust is very difficult. 

• String, &str


• CString, &CStr


• OsString, &OsStr


• Low-level system operation in Rust is very difficult. 

• E.g., netlink: used to transfer information between the 
kernel and user-space processes.
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Rust in System Programming

• Testing and code coverage in Rust are non-trivial tasks. 

• Integration test framework for CLI: assert_cmd, assert_fs


• tarpaulin: a code coverage reporting tool for the Cargo build 
system


• gcov: a source code coverage analysis and statement-by-
statement profiling tool

ptrace-based code 
coverage profiling tool

llvm-gcov-based 
code coverage profiling 
tool
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Quick Start
$ docker run -it mesalocklinux/mesalock-linux

• Live ISO


• Docker image


• rootfs


• x86_64, arm in the near future



Contributing
• https://github.com/mesalock-linux/mesalock-distro


• You can get involved in various forms:


• Try to use MesaLock Linux, report issue, enhancement suggestions, etc


• Contribute: optimize development process, improve documents, 
closing issues, etc


• Contribute to core packages: improving minit, mgetty, giproute2, etc


• Writing applications using memory safe programming languages like 
Rust/Go, and joining the packages


• Auditing source code of the projects and related packages


• You are welcome to send pull requests and report issues on GitHub.

https://github.com/mesalock-linux/mesalock-distro


Thank you!


