
Building Safe and Secure
Systems in Rust

Mingshen Sun | Baidu X-Lab, USA

December 2018

RustRush, Moscow

• Senior Security Researcher in Baidu X-Lab, USA

• System security, mobile security, IoT security, and car
hacking

• Maintaining open-source projects: MesaLock Linux,
MesaPy, TaintART, Pass for iOS, etc.

• mssun @ GitHub | https://mssun.me

!2

About Me

https://mssun.me

Baidu X-Lab

!3

Outline

• Building safe and secure systems in Rust

• Challenges, lessons learned, and open questions

Non-executable Data /
Instruction Set Randomization

VII.A.

Data Integrity

V.B.

Data Space
Randomization

VII.B.

Data-flow Integrity

VIII.B.

Control-flow Integrity

V.A.

Address Space
Randomization

Code Integrity
VIII.A.

Code Pointer Integrity

Instruction Set
Randomization

VI.

Memory Safety

Information

leak

Make a pointer go

out of bounds

Make a pointer

become dangling

Use pointer

to write (or free)

Use pointer

to read

Modify a

code pointer ...

Output data

variable

… to the address of

shellcode / gadget

Use pointer by

indirect call/jump

Execute injected

shellcode

Execute available

gadgets / functions

Control-flow

hijack attack

Modify

code ...

Code corruption

attack

Modify a

data pointer

Modify a data

variable ...

Data-only

attack

… to the attacker

specified value

Use corrupted

data variable

Use pointer by

return instruction

… to the attacker

specified code

Interpret the

output data

1

2

3

4

5

6

Figure 1. Attack model demonstrating four exploit types and policies mitigating the attacks in different stages

included in the output. The classic example of this attack is
the printf format string bug, where the format string is
controlled by the attacker. By specifying the format string
the attacker creates invalid pointers and reads (and writes)
arbitrary memory locations.

printf(user_input); // input "%3$x" prints the
// 3rd integer on the stack

If an attacker controlled pointer is used to write the
memory, then any variable, including other pointers or even
code, can be overwritten. Buffer overflows and indexing
bugs can be exploited to overwrite sensitive data such as
a return address or virtual table (vtable) pointer. Corrupting
the vtable pointer is an example of the backward loop in
Figure 1. Suppose a buffer overflow makes an array pointer
out of bounds in the first round that is exploited (in Step 3)
to corrupt a nearby vtable pointer in memory in the second
round. When the corrupted vtable pointer is dereferenced (in
Step 2), a bogus virtual function pointer will be used. It is
important to see that with one memory error, more and more
memory errors can be raised by corrupting other pointers.
Calling free() with an attacker controlled pointer can also
be exploited to carry out arbitrary memory writes [19]. Write
dereferences can be exploited to leak information as well.

printf("%s\n", err_msg);

For instance, the attacker is able to leak arbitrary mem-
ory contents in the above line of code by corrupting the
err_msg pointer.

Temporal errors, when a dangling pointer is dereferenced
in Step 2, can be exploited similarly to spatial errors. A
constraint for exploitable temporal errors is that the memory
area of the deallocated object (the old object) is reused by
another object (new object). The type mismatch between
the old and new object can allow the attacker to access
unintended memory.

Let us consider first reading through a dangling pointer
with the old object’s type but pointing to the new object,
which is controlled by the attacker. When a virtual function
of the old object is called and the virtual function pointer is
looked up, the contents of the new object will be interpreted
as the vtable pointer of the old object. This allows the
corruption of the vtable pointer, comparable to exploiting
a spatial write error, but in this case the dangling pointer
is only dereferenced for a read. An additional aspect of
this attack is that the new object may contain sensitive
information that can be leaked when read through the
dangling pointer of the old object’s type.

SoK: Eternal War in Memory
Laszlo Szekeres, Mathias Payer, Tao Wei, Dawn Song

Proceedings of the 2013 IEEE Symposium on Security and Privacy

MEMORY
SAFETY

!5

Approaches to Mitigate
Memory Corruption Errors

• Program analysis like symbolic execution: KLEE

• Memory-checking virtual machine: Valgrind

• Compiler instrumentation: AddressSanitizer

• Fuzzing: AFL, libFuzzer

• Formal verification: Seahorn, Smack, Trust-in-Soft

!6

Approaches to Mitigate
Memory Corruption Errors

• Program analysis like symbolic execution: KLEE

• Memory-checking virtual machine: Valgrind

• Compiler instrumentation: AddressSanitizer

• Fuzzing: AFL, libFuzzer

• Formal verification: Seahorn, Smack, Trust-in-Soft

• "Safe" programming languages: Rust, Go, etc

!7

Building Safe and Secure
Systems in Rust

• Safe: safe memory access, safe concurrency

• Secure: less vulnerabilities, reduced attack surfaces

Building Safe and Secure
Systems in Rust

• operating system: TockOS, RedoxOS

• compiler: Rust

• network service: DNS, TLS, web server, etc.

• database

• browser: Servo, CSS engine, etc.

Baidu X-Lab ♥ Rust
• MesaLock Linux: a memory-safe Linux distribution

• MesaBox: a collection of core system utilities written in Rust

• MesaLink: a memory-safe and OpenSSL-compatible TLS
library

• MesaPy: secure and fast Python based on PyPy

• Rust SGX SDK: provides the ability to write Intel SGX
applications in Rust

• and many more ...

!10

Challenges, Lessons Learned, and
Open Questions

Challenges

• Rust language and ecosystem

• Unsafe Rust

• Foreign Function Interface (FFI)

• Challenges in hybrid memory model

Memory safe? Meh…

!13

What is Unsafe Rust?

• All the code we’ve discussed so far has had Rust’s
memory safety guarantees enforced at compile time.

• However, Rust has a second language hiding inside of it
that does not enforce these memory safety guarantees:
unsafe Rust. This works just like regular Rust, but gives
you extra superpowers.

!14

Unsafe Superpowers
1. Dereference a raw pointer

2. Access or modify a mutable static variable

3. Call an unsafe function or method

4. Implement an unsafe trait

!15

Unsafe Superpowers
1. Dereference a raw pointer

unsafe {
 let address = 0x012345usize;
 let r = address as *const i32;
}

Rust

!16

Read/write arbitrary memory address.

Unsafe Superpowers
2. Access or modify a mutable static variable

static mut COUNTER: u32 = 0;

fn add_to_count(inc: u32) {
 unsafe { COUNTER += inc; }
}

fn main() {
 add_to_count(3);

 unsafe { println!("COUNTER: {}", COUNTER); }
}

Rust

!17

Data races.

Unsafe Superpowers
3. Call an unsafe function or method

unsafe fn dangerous() {
 let address = 0x012345usize;
 let r = address as *const i32;
}

fn main() {
 unsafe { dangerous(); }
}

Rust

!18

Call functions may cause undefined behaviors.

Unsafe Superpowers
3. Call an unsafe function or method (external)

extern "C" {
 fn abs(input: i32) -> i32;
}

fn main() {
 unsafe {
 println!("Absolute value of -3 according to C:
{}", abs(-3));
 }
}

Rust

!19

Call external functions may cause undefined behaviors.

"Unsafe" is agnostic

• Rust developers: It's OK. At least you explicitly type the
"unsafe" keyword in the source code, and I know it is
"unsafe" before using it.

• Me: Wrong. The "unsafe" code could be included in the
dependent libraries. Did you review the source code of
dependencies?

!20

"Unsafe" is agnostic
Library:

unsafe fn dangerous() {
 let address = 0x012345usize;
 let r = address as *const i32;
}

fn safe_function() {
 unsafe { dangerous(); }
}

Developer:

fn main {
 safe_function();
}

Rust

some libraries (including the std library) wrap
unsafe code and re-export as "safe" functions

!21

Case study: Ion Shell

• Ion is a modern system shell that features a simple, yet
powerful, syntax. It is written entirely in Rust, which
greatly increases the overall quality and security of
the shell. It also offers a level of performance that
exceeds that of Dash, when taking advantage of Ion's
features. While it is developed alongside, and primarily
for, RedoxOS, it is a fully capable on other *nix platforms.

!22

Dependency graph of Ion shell

ion-shell

ansi_term

libc

bitflags

calculate

liner

failure

failure_derive

fnv glob itoa

lazy_static libloading

permutaterand

redox_syscall

regex smallstringsmallvec v0.4.4 unicode-segmentation

users

version_check xdg

memchratty

termion winapi

redox_termios winapi-i686-pc-windows-gnu winapi-x86_64-pc-windows-gnu

backtrace

backtrace-sys cfg-if rustc-demangle

cc

bytecount

clap decimal

strsimtextwrap

unicode-width

vec_map ord_subset rustc-serializeserde

quote

syn

synstructure

synom

unicode-xid

fuchsia-zircon

fuchsia-zircon-sys

aho-corasick regex-syntax thread_localutf8-ranges smallvec v0.3.3

unreachable

void

ion-shell

ansi_term

libc

bitflags

calculate

liner

failure

failure_derive

fnv glob itoa

lazy_static libloading

permutaterand

redox_syscall

regex smallstringsmallvec v0.4.4 unicode-segmentation

users

version_check xdg

memchratty

termion winapi

redox_termios winapi-i686-pc-windows-gnu winapi-x86_64-pc-windows-gnu

backtrace

backtrace-sys cfg-if rustc-demangle

cc

bytecount

clap decimal

strsimtextwrap

unicode-width

vec_map ord_subset rustc-serializeserde

quote

syn

synstructure

synom

unicode-xid

fuchsia-zircon

fuchsia-zircon-sys

aho-corasick regex-syntax thread_localutf8-ranges smallvec v0.3.3

unreachable

void

ion-shell

ansi_term

libc

bitflags

calculate

liner

failure

failure_derive

fnv glob itoa

lazy_static libloading

permutaterand

redox_syscall

regex smallstringsmallvec v0.4.4 unicode-segmentation

users

version_check xdg

memchratty

termion winapi

redox_termios winapi-i686-pc-windows-gnu winapi-x86_64-pc-windows-gnu

backtrace

backtrace-sys cfg-if rustc-demangle

cc

bytecount

clap decimal

strsimtextwrap

unicode-width

vec_map ord_subset rustc-serializeserde

quote

syn

synstructure

synom

unicode-xid

fuchsia-zircon

fuchsia-zircon-sys

aho-corasick regex-syntax thread_localutf8-ranges smallvec v0.3.3

unreachable

void

ion-shell

ansi_term

libc

bitflags

calculate

liner

failure

failure_derive

fnv glob itoa

lazy_static libloading

permutaterand

redox_syscall

regex smallstringsmallvec v0.4.4 unicode-segmentation

users

version_check xdg

memchratty

termion winapi

redox_termios winapi-i686-pc-windows-gnu winapi-x86_64-pc-windows-gnu

backtrace

backtrace-sys cfg-if rustc-demangle

cc

bytecount

clap decimal

strsimtextwrap

unicode-width

vec_map ord_subset rustc-serializeserde

quote

syn

synstructure

synom

unicode-xid

fuchsia-zircon

fuchsia-zircon-sys

aho-corasick regex-syntax thread_localutf8-ranges smallvec v0.3.3

unreachable

void

ion-shell

ansi_term

libc

bitflags

calculate

liner

failure

failure_derive

fnv glob itoa

lazy_static libloading

permutaterand

redox_syscall

regex smallstringsmallvec v0.4.4 unicode-segmentation

users

version_check xdg

memchratty

termion winapi

redox_termios winapi-i686-pc-windows-gnu winapi-x86_64-pc-windows-gnu

backtrace

backtrace-sys cfg-if rustc-demangle

cc

bytecount

clap decimal

strsimtextwrap

unicode-width

vec_map ord_subset rustc-serializeserde

quote

syn

synstructure

synom

unicode-xid

fuchsia-zircon

fuchsia-zircon-sys

aho-corasick regex-syntax thread_localutf8-ranges smallvec v0.3.3

unreachable

void

!23

cargo build -vv
• Build Ion shell again with verbose output.

• decimal crate: Decimal Floating Point arithmetic for rust
based on the decNumber library. (http://speleotrove.com/
decimal/decnumber.html)

• Ion shell depends on a decimal crate which still uses C code
with potential memory safety issues.

running: "cc" "-O0" "-ffunction-sections" "-fdata-sections"
"-fPIC" "-g" "-m64" "-I" "decNumber" "-Wall" "-Wextra" "-
DDECLITEND=1" "-o" "/Users/mssun/Repos/ion/target/debug/
build/decimal-b8ff0faecf5447ab/out/decNumber/decimal64.o" "-
c" "decNumber/decimal64.c"

!24

http://speleotrove.com/decimal/decnumber.html
http://speleotrove.com/decimal/decnumber.html

Case study: rusqlite
• rusqlite is a Rust library providing SQLite related APIs

• an API wrapper of SQLite written in C

• 38 crates directly depend on rusqlite

• 200 downloads/day

!25

Memory corruption in rusqlite library

• We tried a SQLite type confusion bug (CVE-2017-6991) in
rusqlite library

• We can easily trigger the vulnerabilities

Many Birds, One Stone: Exploiting a Single SQLite Vulnerability Across Multiple
Software, Siji Feng, Zhi Zhou, Kun Yang, BlackHat USA 17

!26

extern crate rusqlite;
use rusqlite::Connection;

fn main() {
 let conn = Connection::open_in_memory().unwrap();
 match conn.execute("create virtual table a using fts3(b);", &[]) {
 // ...
 }
 match conn.execute("insert into a values(x'4141414141414141');", &[]) {
 // ...
 }
 match conn.query_row("SELECT HEX(a) FROM a", &[], |row| -> String
{ row.get(0) }) {
 // ...
 }
 match conn.query_row("SELECT optimize(b) FROM a", &[], |row| -> String
{ row.get(0) }) {
 // ...
 }
}

Rust

$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.05 secs
 Running `target/debug/rusqlite`
success: 0 rows were updated
success: 1 rows were updated
success: F0634013D87F0000
[1] 31467 segmentation fault cargo run

Run

!27

Data Collection and Study

• 10,693 Rust libraries in crates.io

• 200 million public downloads in total

• two studies

• usage of external C/C++ libraries

• usage of unsafe keywords

!28

Usage of external libraries (>= 100)

0

225

450

675

900

cry
pto ssl

bac
ktr

ac
e (

sta
tic

)

rin
g-c

ore
 (s

tat
ic)

rin
g-t

es
t (s

tat
ic)

op
en

ssl
_sh

im
 (s

tat
ic)

miniz
 (s

tat
ic)

c_
he

lper
(st

ati
c) dl

cry
pto_

he
lper

(st
ati

c) z

cu
rl (

sta
tic

)

112
160168175190209222

272272

468

825825

!29

“unsafe” code

• 3,099 out of 10,693 Rust libraries (crates) contain unsafe
code

• 14,796 files in total

• 651,193 lines of code

!30

Lessons Learned
• Unsafe in the XML library

Lessons Learned
• Unsafe in the XML library

Lessons Learned
• Unsafe in the XML library

• CVEs in the Rust standard library

Lessons Learned
• Unsafe in the XML library

• CVEs in the Rust standard library

CVE-2018-1000657: a Buffer Overflow vulnerability in
std::collections::vec_deque::VecDeque::reserve() function that
can result in Arbitrary code execution

CVE-2018-1000810: The `str::repeat` function in the standard
library allows repeating a string a fixed number of times,
returning an owned version of the final string. The capacity of
the final string is calculated by multiplying the length of the
string being repeated by the number of copies. This
calculation can overflow, and this case was not properly
checked for.

The rest of the implementation of `str::repeat` contains
unsafe code that relies on a preallocated vector having
the capacity calculated earlier. On integer overflow the
capacity will be less than required, and which then writes
outside of the allocated buffer, leading to buffer overflow.

Lessons Learned
• Unsafe in the XML library

• CVEs in the Rust standard library

• Unsafe in actix

Lessons Learned
• Unsafe in the XML library

• CVEs in the Rust standard library

• Unsafe in actix

"Right now the actix-web code contains
100+ uses of unsafe. Presumably this is in
order to achieve the best possible
performance in hot parts of the code."

@seanmonstar: "I suspect most all of
these can be made safe with no
performance cost, just be restructuring
some things."

"last week actix-web had over 120
unsafes, as of today I only count 38."

Lessons Learned
• Unsafe in the XML library

• CVEs in the Rust standard library

• Unsafe in actix

• FFI (Foreign Language Interface) in the miniz_oxide library

Lessons Learned
• Unsafe in the XML library

• CVEs in the Rust standard library

• Unsafe in actix

• FFI (Foreign Language Interface) in the miniz_oxide library

The inflate_state and tdefl_compressor state
struct are not consistent. This will cause a type
confusion issue when calling deflateEnd with
the inflate stream buffer using the C API,
resulting a "double free" crash.

Lessons Learned
• Unsafe in the XML library

• CVEs in the Rust standard library

• Unsafe in actix

• FFI (Foreign Language Interface) in the miniz_oxide library

How to Contribute?

• Rust Security Policy

• Google Groups (rustlang-security-announcements)

• RustSec Advisory Database

• Rust Secure Code Working Group

• The Rust Fuzz Project

Open Questions
• C to Rust translation

• Safety and security in the Rust compiler and std

• Unsafe Rust code analysis

• Rust unsafe code sandbox and isolation

• Formal verification of Rust and its libraries

• Memory-safety across various boundaries

Existing Projects
• Formal verification

• RustBelt: Securing the Foundations of the Rust
Programming Language

• Verifying Rust Programs with SMACK

• RustSEM: An Operational Semantics for Rust
Language

• Other verification framework based on LLVM IR:
SeaHorn

Existing Projects
• Formal verification

• Fuzzing

• The Rust Fuzz Project: AFL, Hongfuzz, LLVM libFuzzer

Existing Projects
• Formal verification

• Fuzzing

• The Rust Fuzz Project: AFL, Hongfuzz, LLVM libFuzzer

Existing Projects
• Formal verification

• Fuzzing

• Code analysis

• Miri: an experimental interpreter for Rust's mid-level
intermediate representation (MIR).

• out-of-bounds memory accesses and use-after-free

• invalid use of uninitialized data

• Violation of intrinsic preconditions

• etc

Existing Projects
• Formal verification

• Fuzzing

• Code analysis

• Other tools

• cargo geiger

Papers

!47

https://goo.gl/99Rg3c

Conclusion

• Building safe and secure systems in Rust

• Challenges, lessons learned, and open questions

Questions?

