
MesaLock Linux
Towards a memory-safe Linux distribution

Mingshen Sun

MesaLock Linux Maintainer | Baidu X-Lab, USA

Shanghai Jiao Tong University, 2018

whoami

• Senior Security Research in Baidu X-Lab, Baidu USA

• PhD, The Chinese University of Hong Kong

• System security, mobile security, IoT security, and car
hacking

• MesaLock Linux, TaintART, Pass for iOS, etc.

• mssun @ GitHub | https://mssun.me

!2

https://mssun.me

MesaLock Linux

• Why

• What

• How

!3

Why

• Memory corruption occurs in a computer program when
the contents of a memory location are unintentionally
modified; this is termed violating memory safety.

• Memory safety is the state of being protected from
various software bugs and security vulnerabilities when
dealing with memory access, such as buffer
overflows and dangling pointers.

!4

Stack Buffer Overflow

• https://youtu.be/T03idxny9jE

!5

Types of memory errors
• Access errors

• Buffer overflow

• Race condition

• Use after free

• Uninitialized variables

• Memory leak

• Double free

!6

Memory-safety in user space

• CVE-2017-13089 wget: Stack-based buffer overflow in
HTTP protocol handling

• A stack-based buffer overflow when processing
chunked, encoded HTTP responses was found in wget.
By tricking an unsuspecting user into connecting to a
malicious HTTP server, an attacker could exploit this flaw
to potentially execute arbitrary code.

• https://bugzilla.redhat.com/show_bug.cgi?id=1505444

• POC: https://github.com/r1b/CVE-2017-13089

!7

https://bugzilla.redhat.com/show_bug.cgi?id=1505444
https://github.com/r1b/CVE-2017-13089

What

• Linux distribution

• Memory-safe user space

!8

Linux Distribution

• A Linux distribution (often abbreviated as distro) is
an operating system made from a software collection,
which is based upon the Linux kernel and, often,
a package management system.

!9

Linux Distros
• Server: CentOS, Federa, RedHat, Debian

• Desktop: Ubuntu

• Mobile: Android

• Embedded: OpenWRT, Yocto

• Hard-core: Arch Linux, Gentoo

• Misc: ChromeOS, Alpine Linux

!10

Security and Safety?

• Gentoo Hardened: enables several risk-mitigating options
in the toolchain, supports PaX, grSecurity, SELinux, TPE
and more.

• Kernel hardening patches

• Safety? No.

• User space? GNU.

!11

Introducing MesaLock Linux

• MesaLock Linux is a general purpose Linux distribution
which aims to provide a safe and secure user space
environment. To eliminate high-severe vulnerabilities
caused by memory corruption, the whole user space
applications are rewritten in memory-
safe programming languages like Rust and Go.

!12

Programming Language

Non-safe Safe

Control C/C++ Rust

Less control Python Go

!13

Rust

• Rust is a systems programming language that runs
blazingly fast, prevents segfaults, and guarantees thread
safety.

!14

How Does Rust Guarantee
Memory Safety?

• Ownership

• Borrowing

• No need for a runtime (C/C++)

• Memory safety (GC)

• Data-race freedom

!15

Ownership

!16

fn main() {
 let alice = vec![1, 2, 3];;
 {
 let bob = alice;
 println!("bob: {}", bob[0]);
 }
 println!("alice: {}", alice[0]);
}

Alice

📔

Ownership (T)
BobAlice

📔

!17

fn main() {
 let alice = vec![1, 2, 3];;
 {
 let bob = alice;
 println!("bob: {}", bob[0]);
 }
 println!("alice: {}", alice[0]);
}

Ownership (T)

!18

fn main() {
 let alice = vec![1, 2, 3];;
 {
 let bob = alice;
 println!("bob: {}", bob[0]);
 }
 println!("alice: {}", alice[0]);
}

BobAlice

📔

Ownership (T)

!19

Alice

📔

fn main() {
 let alice = vec![1, 2, 3];;
 {
 let bob = alice;
 println!("bob: {}", bob[0]);
 }
 println!("alice: {}", alice[0]);
}

Ownership (T)

!20

Alice

fn main() {
 let alice = vec![1, 2, 3];;
 {
 let bob = alice;
 println!("bob: {}", bob[0]);
 }
 println!("alice: {}", alice[0]);
}

error[E0382]: use of moved value: `alice`
 --> src/main.rs:7:27
 |
4 | let bob = alice;
 | --- value moved here
...
7 | println!("alice: {}", alice[0]);
 | ^^^^^ value used here after move
 |
 = note: move occurs because `alice` has type
`std::vec::Vec<i32>`, which does not implement the `Copy` trait

Ownership (T)

!21

Alice

fn main() {
 let mut alice = vec![1, 2, 3];;
 {
 let mut bob = alice;
 println!("bob: {}", bob[0]);
 }
 println!("alice: {}", alice[0]);
}

error[E0382]: use of moved value: `alice`
 --> src/main.rs:7:27
 |
4 | let bob = alice;
 | --- value moved here
...
7 | println!("alice: {}", alice[0]);
 | ^^^^^ value used here after move
 |
 = note: move occurs because `alice` has type
`std::vec::Vec<i32>`, which does not implement the `Copy` trait

Shared Borrow (&T)

BobAlice📔

Aliasing + Mutation

Carl Dave

📔

📔📔

!22

Mutable Borrow (&mut T)
Alice

📔

!23

fn main() {
 let mut alice = 1;
 {
 let bob = &mut alice;
 *bob = 2;
 println!("bob: {}", bob);
 }
 println!("alice: {}", alice);
}

Mutable Borrow (&mut T)

!24

BobAlice

📔

fn main() {
 let mut alice = 1;
 {
 let bob = &mut alice;
 *bob = 2;
 println!("bob: {}", bob);
 }
 println!("alice: {}", alice);
}

Mutable Borrow (&mut T)

!25

Alice

📔

fn main() {
 let mut alice = 1;
 {
 let bob = &mut alice;
 *bob = 2;
 println!("bob: {}", bob);
 }
 println!("alice: {}", alice);
}

Mutable Borrow (&mut T)

!26

Alice

📔

fn main() {
 let mut alice = 1;
 {
 let bob = &mut alice;
 *bob = 2;
 println!("bob: {}", bob);
 }
 println!("alice: {}", alice);
}

Mutable Borrow (&mut T)

Alice

📔

Aliasing + Mutation

!27

The lifetime of a borrowed reference should end
before the lifetime of the owner object does.

Rust’s Ownership &
Borrowing
Aliasing + Mutation

• Compiler enforced:

• Every resource has a unique owner

• Others can borrow the resource from its owner (e.g.,
create an alias) with restrictions

• Owner cannot free or mutate its resource while it is
borrowed

!28

Use-After Free in C/Rust
void func() {
 int *used_after_free = malloc(sizeof(int));

 free(used_after_free);

 printf("%d", *used_after_free);
}

fn main() {
 let name = String::from("Hello World");
 let mut name_ref = &name;
 {
 let new_name = String::from("Goodbye");
 name_ref = &new_name;
 }
 println!("name is {}", &name_ref);
}

!29

C/C++

Rust

Use-After Free in Rust

!30

Formal Verification

• RustBelt: Securing the Foundations of the Rust
Programming Language (POPL 2018)

• In this paper, we give the first formal (and machine-
checked) safety proof for a language representing a
realistic subset of Rust.

• https://people.mpi-sws.org/~dreyer/papers/rustbelt/
paper.pdf

https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf

Rust’s Performance vs C

!32

Rust’s Performance vs Go

Rust’s Performance
• Firefox Quantum includes Stylo, a pure-Rust CSS engine

that makes full use of Rust’s “Fearless Concurrency” to
speed up page styling. It’s the first major component of
Servo to be integrated with Firefox, and is a major
milestone for Servo, Firefox, and Rust. It replaces
approximately 160,000 lines of C++ with 85,000 lines of
Rust.

• Parallelism leads to a lot of performance improvements,
including a 30% page load speedup for Amazon’s
homepage.

!34

Go?

• Type safe

• Fast GC

• Good at parallelization

MesaLock Linux
• Linux kernel

• Compatible

• Stable

• Memory-safe user space

• Safe

• Secure

!36

Rules-of-thumb for Hybrid
Memory-safe Architecture

• Unsafe components should be appropriately isolated and
modularized, and the size should be small (or minimized).

• Unsafe components should not weaken the safe,
especially, public APIs and data structures.

• Unsafe components should be clearly identified and
easily upgraded.

!37

MesaLock Linux

• Live ISO

• Docker image

• rootfs

• x86_64, arm in the near future

!38

Quick Start

$ docker run -it mesalocklinux/mesalock-linux

!39

MesaLock Linux From Scratch

• Bootloader

• Linux kernel

• init

• getty

• login

• iproute2

• coreutils

• syslinux

• Linux 4.9.58

• minit (Rust)

• mgetty (Rust)

• giproute2 (Go)

• uutils-coreutils (Rust)

!40

The MesaLock Linux Project
• Open source

• BSD License (friendly)

• Development (commit history)

• Issue (GitHub issue tracking)

• Discussion (IRC)

• Roadmap (open)

• etc

http://mesalock-linux.org

#mesalock-linux
#mesalock-linux-cn

#mesalock-linux-devel
@ Freenode

!41

http://mesalock-linux.org

The MesaLock Linux Project

!42

The MesaLock Linux Project

• Two parts:

• MesaLock Linux: building scripts, etc

• Core packages: minit, mgetty, giproute2, etc

!43

The MesaLock Linux Project
• More specific:

• mesalock-linux/mesalock-distro

• mesalock-linux/packages

• mesalock-linux/giproute2

• mesalock-linux/minit

• mesalock-linux/mgetty

• mesalock-linux/miproute2

!44

• brotli: compression tool written in Rust

• busybox: busybox tool set for testing only

• exa: replacement for ls written in Rust

• fd-find: simple, fast and user-friendly alternative to find

• filesystem: base filesystem layout

• gcc-libs: GCC library, only libgcc_s.so is used

• giproute2: ip tool written in Go

• glibc: glibc library

• init: init script

• ion-shell: shell written in Rust

• linux: Linux kernel

The MesaLock Linux Packages

!45

• mesalock-demo: some demo projects

• mgetty: getty written in Rust

• micro: modern and intuitive terminal-based text editor in written Go

• minit: init written in Rust

• ripgrep: ripgrep combines the usability of The Silver Searcher with the
raw speed of grep, written in Rust

• syslinux: bootloader

• tokei: count your code, quickly, in Rust

• tzdata: timezone data

• uutils-coreutils: cross-platform Rust rewrite of the GNU coreutils

• uutils-findutils: rust implementation of findutils

• xi-core: a modern editor with a backend written in Rust

• xi-tui: a tui frontend for Xi

The MesaLock Linux Packages

!46

New Package?
• A package consist of a BUILD script and related files and

patches.

• The build tool (mkpkg) will call following function in order:

1. prepare(): downloading source code and prepare
configration stuff

2. build(): buiding sources

3. package(): zip the output as a package

!47

New Package?

!48

Roadmap
• 0.1: public release

• 0.2: polish source code organization, improved development
process

• 0.3: improving core packages

• 0.4: including more utilities

• 0.5: support multi-platforms

• …

• 1.0: in production

!49

Contributing
• You can get involved in various forms:

• Try to use MesaLock Linux, report issue, enhancement suggestions, etc

• Contribute to MesaLock Linux: optimize development process, improve
documents, closing issues, etc

• Contribute to core packages of MesaLock Linux:
improving minit, mgetty, giproute2, etc

• Writing applications using memory safe programming languages like Rust/
Go, and joining the the MesaLock Linux packages

• Auditing source code of the MesaLock Linux projects and related packages

• You are welcome to send pull requests and report issues on GitHub.

!50

Feedbacks

!51

!52

!53

!54

Thank you!

!55

Future Work

• TrustZone OS in Rust

• Linux kernel driver in Rust

Memory-safety in Linux kernel

!57

Memory-safe Linux Device
Driver using Rust

• https://github.com/tsgates/rust.ko

• a minimal Linux kernel module written in rust

• FFI, unsafe

https://github.com/tsgates/rust.ko

