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whoami

• Senior Security Research in Baidu X-Lab, Baidu USA


• PhD, The Chinese University of Hong Kong


• System security, mobile security, IoT security, and car 
hacking


• MesaLock Linux, TaintART, Pass for iOS, etc.


• mssun @ GitHub | https://mssun.me
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MesaLock Linux

• Why


• What


• How
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Why

• Memory corruption occurs in a computer program when 
the contents of a memory location are unintentionally 
modified; this is termed violating memory safety. 


• Memory safety is the state of being protected from 
various software bugs and security vulnerabilities when 
dealing with memory access, such as buffer 
overflows and dangling pointers.
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Stack Buffer Overflow

• https://youtu.be/T03idxny9jE
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Types of memory errors
• Access errors


• Buffer overflow


• Race condition


• Use after free


• Uninitialized variables


• Memory leak


• Double free
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Memory-safety in user space

• CVE-2017-13089 wget: Stack-based buffer overflow in 
HTTP protocol handling


• A stack-based buffer overflow when processing 
chunked, encoded HTTP responses was found in wget. 
By tricking an unsuspecting user into connecting to a 
malicious HTTP server, an attacker could exploit this flaw 
to potentially execute arbitrary code.


• https://bugzilla.redhat.com/show_bug.cgi?id=1505444


• POC: https://github.com/r1b/CVE-2017-13089
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What

• Linux distribution


• Memory-safe user space
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Linux Distribution

• A Linux distribution (often abbreviated as distro) is 
an operating system made from a software collection, 
which is based upon the Linux kernel and, often, 
a package management system. 
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Linux Distros
• Server: CentOS, Federa, RedHat, Debian


• Desktop: Ubuntu


• Mobile: Android


• Embedded: OpenWRT, Yocto


• Hard-core: Arch Linux, Gentoo


• Misc: ChromeOS, Alpine Linux
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Security and Safety?

• Gentoo Hardened: enables several risk-mitigating options 
in the toolchain, supports PaX, grSecurity, SELinux, TPE 
and more.


• Kernel hardening patches


• Safety? No.


• User space? GNU.
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Introducing MesaLock Linux

• MesaLock Linux is a general purpose Linux distribution 
which aims to provide a safe and secure user space 
environment. To eliminate high-severe vulnerabilities 
caused by memory corruption, the whole user space 
applications are rewritten in memory-
safe programming languages like Rust and Go.
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Programming Language

Non-safe Safe

Control C/C++ Rust

Less control Python Go
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Rust

• Rust is a systems programming language that runs 
blazingly fast, prevents segfaults, and guarantees thread 
safety. 

!14



How Does Rust Guarantee 
Memory Safety?

• Ownership


• Borrowing

• No need for a runtime (C/C++)


• Memory safety (GC)


• Data-race freedom
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Ownership
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fn main() {
    let alice = vec![1, 2, 3];;
    {
        let bob = alice;
        println!("bob: {}", bob[0]);
    }
    println!("alice: {}", alice[0]);
}

Alice

📔



Ownership (T)
BobAlice

📔
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Ownership (T)
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Alice

fn main() {
    let alice = vec![1, 2, 3];;
    {
        let bob = alice;
        println!("bob: {}", bob[0]);
    }
    println!("alice: {}", alice[0]);
}

error[E0382]: use of moved value: `alice`
 --> src/main.rs:7:27
  |
4 |         let bob = alice;
  |             --- value moved here
...
7 |     println!("alice: {}", alice[0]);
  |                           ^^^^^ value used here after move
  |
  = note: move occurs because `alice` has type 
`std::vec::Vec<i32>`, which does not implement the `Copy` trait



Ownership (T)
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Alice

fn main() {
    let mut alice = vec![1, 2, 3];;
    {
        let mut bob = alice;
        println!("bob: {}", bob[0]);
    }
    println!("alice: {}", alice[0]);
}

error[E0382]: use of moved value: `alice`
 --> src/main.rs:7:27
  |
4 |         let bob = alice;
  |             --- value moved here
...
7 |     println!("alice: {}", alice[0]);
  |                           ^^^^^ value used here after move
  |
  = note: move occurs because `alice` has type 
`std::vec::Vec<i32>`, which does not implement the `Copy` trait



Shared Borrow (&T)

BobAlice📔

Aliasing + Mutation

Carl Dave

📔

📔📔

!22



Mutable Borrow (&mut T)
Alice

📔
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fn main() {
    let mut alice = 1;
    {
        let bob = &mut alice;
        *bob = 2;
        println!("bob: {}", bob);
    }
    println!("alice: {}", alice);
}



Mutable Borrow (&mut T)
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Mutable Borrow (&mut T)
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Alice

📔
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Mutable Borrow (&mut T)
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Alice

📔

fn main() {
    let mut alice = 1;
    {
        let bob = &mut alice;
        *bob = 2;
        println!("bob: {}", bob);
    }
    println!("alice: {}", alice);
}



Mutable Borrow (&mut T)

Alice

📔

Aliasing + Mutation
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The lifetime of a borrowed reference should end 
before the lifetime of the owner object does.



Rust’s Ownership & 
Borrowing
Aliasing + Mutation


• Compiler enforced:


• Every resource has a unique owner


• Others can borrow the resource from its owner (e.g., 
create an alias) with restrictions


• Owner cannot free or mutate its resource while it is 
borrowed
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Use-After Free in C/Rust
void func() { 
    int *used_after_free = malloc(sizeof(int)); 

    free(used_after_free); 

    printf("%d", *used_after_free); 
}

fn main() { 
    let name = String::from("Hello World"); 
    let mut name_ref = &name; 
    { 
        let new_name = String::from("Goodbye"); 
        name_ref = &new_name; 
    } 
    println!("name is {}", &name_ref); 
}
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C/C++

Rust



Use-After Free in Rust
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Formal Verification

• RustBelt: Securing the Foundations of the Rust 
Programming Language (POPL 2018)


• In this paper, we give the first formal (and machine-
checked) safety proof for a language representing a 
realistic subset of Rust. 

• https://people.mpi-sws.org/~dreyer/papers/rustbelt/
paper.pdf

https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf


Rust’s Performance vs C
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Rust’s Performance vs Go



Rust’s Performance
• Firefox Quantum includes Stylo, a pure-Rust CSS engine 

that makes full use of Rust’s “Fearless Concurrency” to 
speed up page styling. It’s the first major component of 
Servo to be integrated with Firefox, and is a major 
milestone for Servo, Firefox, and Rust. It replaces 
approximately 160,000 lines of C++ with 85,000 lines of 
Rust. 

• Parallelism leads to a lot of performance improvements, 
including a 30% page load speedup for Amazon’s 
homepage.
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Go?

• Type safe


• Fast GC


• Good at parallelization



MesaLock Linux
• Linux kernel


• Compatible


• Stable


• Memory-safe user space


• Safe


• Secure
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Rules-of-thumb for Hybrid 
Memory-safe Architecture

• Unsafe components should be appropriately isolated and 
modularized, and the size should be small (or minimized).


• Unsafe components should not weaken the safe, 
especially, public APIs and data structures.


• Unsafe components should be clearly identified and 
easily upgraded.
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MesaLock Linux

• Live ISO


• Docker image


• rootfs


• x86_64, arm in the near future
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Quick Start

$ docker run -it mesalocklinux/mesalock-linux
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MesaLock Linux From Scratch

• Bootloader


• Linux kernel


• init


• getty


• login


• iproute2


• coreutils

• syslinux


• Linux 4.9.58


• minit (Rust)


• mgetty (Rust)


• giproute2 (Go)


• uutils-coreutils (Rust)
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The MesaLock Linux Project
• Open source


• BSD License (friendly)


• Development (commit history)


• Issue (GitHub issue tracking)


• Discussion (IRC)


• Roadmap (open)


• etc

http://mesalock-linux.org 

#mesalock-linux 
#mesalock-linux-cn 

#mesalock-linux-devel 
@ Freenode
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http://mesalock-linux.org


The MesaLock Linux Project
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The MesaLock Linux Project

• Two parts:


• MesaLock Linux: building scripts, etc


• Core packages: minit, mgetty, giproute2, etc
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The MesaLock Linux Project
• More specific:


• mesalock-linux/mesalock-distro

• mesalock-linux/packages

• mesalock-linux/giproute2

• mesalock-linux/minit

• mesalock-linux/mgetty

• mesalock-linux/miproute2
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• brotli: compression tool written in Rust


• busybox: busybox tool set for testing only


• exa: replacement for ls written in Rust


• fd-find: simple, fast and user-friendly alternative to find


• filesystem: base filesystem layout


• gcc-libs: GCC library, only libgcc_s.so is used


• giproute2: ip tool written in Go


• glibc: glibc library


• init: init script


• ion-shell: shell written in Rust


• linux: Linux kernel

The MesaLock Linux Packages
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• mesalock-demo: some demo projects  


• mgetty: getty written in Rust


• micro: modern and intuitive terminal-based text editor in written Go


• minit: init written in Rust


• ripgrep: ripgrep combines the usability of The Silver Searcher with the 
raw speed of grep, written in Rust


• syslinux: bootloader


• tokei: count your code, quickly, in Rust


• tzdata: timezone data


• uutils-coreutils: cross-platform Rust rewrite of the GNU coreutils


• uutils-findutils: rust implementation of findutils


• xi-core: a modern editor with a backend written in Rust


• xi-tui: a tui frontend for Xi

The MesaLock Linux Packages
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New Package?
• A package consist of a BUILD script and related files and 

patches.


• The build tool (mkpkg) will call following function in order:


1. prepare(): downloading source code and prepare 
configration stuff


2. build(): buiding sources


3. package(): zip the output as a package
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New Package?
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Roadmap
• 0.1: public release


• 0.2: polish source code organization, improved development 
process


• 0.3: improving core packages


• 0.4: including more utilities


• 0.5: support multi-platforms


• …


• 1.0: in production
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Contributing
• You can get involved in various forms:


• Try to use MesaLock Linux, report issue, enhancement suggestions, etc


• Contribute to MesaLock Linux: optimize development process, improve 
documents, closing issues, etc


• Contribute to core packages of MesaLock Linux: 
improving minit, mgetty, giproute2, etc


• Writing applications using memory safe programming languages like Rust/
Go, and joining the the MesaLock Linux packages


• Auditing source code of the MesaLock Linux projects and related packages


• You are welcome to send pull requests and report issues on GitHub.
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Feedbacks
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Thank you!

!55



Future Work

• TrustZone OS in Rust


• Linux kernel driver in Rust



Memory-safety in Linux kernel
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Memory-safe Linux Device 
Driver using Rust 

• https://github.com/tsgates/rust.ko


• a minimal Linux kernel module written in rust


• FFI, unsafe

https://github.com/tsgates/rust.ko

