
Mingshen Sun, April 16, 2020

WebAssembly
history, internals, security and more

• Text

• HTML

• Flash, ActionScript, Adobe Air, Silverlight, Java, ActiveX,
JavaScript

History all starts from the Web
Background

2

• Text

• HTML

• Flash, ActionScript, Adobe Air, Silverlight, Java, ActiveX,
JavaScript

History all starts from the Web
Background

3

• SpiderMonkey

• V8

• WebKit/JavaScriptCore

• Chakra

JavaScript engine
Background

4

JavaScript is ...
Background

5

JavaScript is confusing.
Background

6
https://stackoverflow.com/questions/359494/which-equals-operator-vs-should-be-used-in-javascript-comparisons

7

TypeScript
Background

JavaScript that scales.

TypeScript is a typed superset of
JavaScript that compiles to plain

JavaScript.

8

• asm.js is a subset of JavaScript

• allow other languages such as C to be run as web applications
while maintaining performance characteristics considerably
better than standard JavaScript,

asm.js
Background

9

https://johnresig.com/blog/asmjs-javascript-compile-target/

• WebAssembly (abbreviated Wasm) is a safe, portable, low-level
code format designed for efficient execution and compact
representation.

WebAssembly to save the world?
Introduction

safe portable low-level
code format

efficient
execution

compact
representation

10

Where does WebAssembly Fit?
Introduction

11

https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/

Where does WebAssembly Fit?
Introduction

12

https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/

wat/wasm
Binary representation (.wasm)

Textual representation (.wat)

13

JS APIs

JavaScript APIs

14

wat/wasm

https://mbebenita.github.io/WasmExplorer/

S-expression

typed

stack machine, not an AST, or a register- or SSA-
based bytecode

Why? https://github.com/WebAssembly/design/
blob/master/Rationale.md#why-a-stack-machine

15

https://github.com/WebAssembly/design/blob/master/Rationale.md#why-a-stack-machine
https://github.com/WebAssembly/design/blob/master/Rationale.md#why-a-stack-machine

Anatomy of a WebAssembly program
Wasm

16

Anatomy of a WebAssembly program
Wasm

17

Anatomy of a WebAssembly program
Wasm

18

Wasm Stack Machine

19

• Memory is linear

• memory-page size: 64KiB

Linear memory mordel
Wasm Memory Model

20

Memory being “linear” means that there’s no random allocator
operators available — all memory addresses used in a module’s code
are expressed in terms of byte offsets from the beginning of a memory
segment.

WASM being a low-level format, this makes a lot of sense. It’s up to the
higher-level language that targets WASM to provide memory
management on top of this linear memory space, if needed.

Load/Store
Wasm Memory Model

21

Load/Store
Wasm Memory Model

22
https://rsms.me/wasm-intro

https://rsms.me/wasm-intro

• POSIX (The Portable Operating System Interface)

• Glibc, musl libc

• MSVC

• CloudABI

• Android

a system interface for WebAssembly to run outside the web
WASI

23

• POSIX (The Portable Operating System Interface)

• Glibc, musl libc

• MSVC

• CloudABI

• Android

a system interface for WebAssembly to run outside the web
WASI

24

CloudABI is what you get if you take
POSIX, add capability-based security,
and remove everything that's
incompatible with that. The result is a
minimal ABI consisting of only 49
syscalls.

Capability-based security means that
processes can only perform actions
that have no global impact. Processes
cannot open files by their absolute
path, cannot open network
connections, and cannot observe
global system state such as the
process table.

WASI API For example, instead of a typical open
system call, WASI provides an openat-
like system call, requiring the calling
process to have a file descriptor for a
directory that contains the file,
representing the capability to open files
within that directory.

25

Hello, World!
Example

26

Hello, World
Example

wastime
rustc

compile

execute
hello.wasmhello.rs

27

Hello, World
Example

hello.rs hello.wasm wastime
rustc

compile

execute

Rust
standard

library

libc
(binding)

println!

fd_write WASI API

28

Hello, World!
Example

29

Hello, World
Example

hello.rs hello.wasm wastime
rustc

compile

execute

Rust
standard

library

libc
(binding)

println!

fd_write WASI API

Where is the actual
implementation of fd_write
at wastime WASI runtime?

30

/crates/wasi-common/src/snapshots/wasi_snapshot_preview1.rs

Example
Hello, World

OsHandle

io::stdout();

31

• Rust: rustc

• C/C++

• Python

XXX to/in Wasm

32

• V8: https://chromium.googlesource.com/v8/v8/+/refs/heads/
master/src/wasm/

• Wastime: https://github.com/bytecodealliance/wasmtime

• Lucet: https://github.com/bytecodealliance/lucet

• wasm-micro-runtime: https://github.com/bytecodealliance/
wasm-micro-runtime

• Wasmer: https://github.com/wasmerio/wasmer

• Wasmi: https://github.com/paritytech/wasmi

Wasm Runtime

33

https://chromium.googlesource.com/v8/v8/+/refs/heads/master/src/wasm/
https://chromium.googlesource.com/v8/v8/+/refs/heads/master/src/wasm/
https://chromium.googlesource.com/v8/v8/+/refs/heads/master/src/wasm/
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/lucet
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/wasmerio/wasmer
https://github.com/paritytech/wasmi

• WebAssembly design doc: https://webassembly.org/docs/
security/

• Users

• Protect users from buggy or malicious modules.

• Developers

• Provide developers with useful primitives and mitigations for
developing safe applications, within the constraints of above
one.

Security

34

https://webassembly.org/docs/security/
https://webassembly.org/docs/security/
https://webassembly.org/docs/security/
https://webassembly.org/docs/security/

• Sandbox (with fault isolation)

• Deterministic execution (with limited exceptions)

• Each module is subject to the security policies of its embedding:
same-origin policy or POSIX

Users
Wasm Security

35

• Modules

• explicit function declaration allow CFI enforcement

• code is immutable and not observable at runtime

Developers
Wasm Security

36

• Varibles

• local variables: zero by default, protected call stack

• global variables: global index space

• unclear static scope (address-of op): separate user-
addressable stack linear memory, zero by default

• References to this memory are computed with infinite
precision to avoid wrapping and simplify bounds checking

Developers
Wasm Security

37

• Traps: terminate execution and signal abnormal behavior to the
execution environment

Developers
Wasm Security

38

• Memory safety (overflows)

• Buffer overflows cannot affect local or global variables
stored in index space, they are fixed-size and addressed by
index.

• Data stored in linear memory can overwrite adjacent objects,
since bounds checking is performed at linear memory region
granularity and is not context-sensitive.

• However, the presence of control-flow integrity and protected
call stacks prevents direct code injection attacks. Thus,
common mitigations such as data execution prevention (DEP)
and stack smashing protection (SSP) are not needed.

Developers
Wasm Security

39

• Memory safety (use-after-free)

• the semantics of pointers have been eliminated for function
calls and variables with fixed static scope, allowing references
to invalid indexes in any index space to trigger a validation
error at load time, or at worst a trap at runtime.

• Accesses to linear memory are bounds-checked at the
region level, potentially resulting in a trap at runtime. These
memory region(s) are isolated from the internal memory of the
runtime, and are set to zero by default unless otherwise
initialized.

Developers
Wasm Security

40

• Memory safety (others)

• possible to hijack the control flow of a module using code reuse attacks
against indirect calls

• ROP attacks are not possible, because control-flow integrity ensures
that call targets are valid functions declared at load time.

• race conditions, such as time of check to time of use (TOCTOU)
vulnerabilities, are possible, since no execution or scheduling guarantees
are provided beyond in-order execution and atomic memory primitives

• side channel attacks

• In the future, additional protections may be provided by runtimes or the
toolchain, such as code diversification or memory randomization (ASLR), or
bounded pointers (“fat” pointers).

Developers
Wasm Security

41

• Control-flow integrity

• Runtime instrumentation: During compilation, the compiler
generates an expected control flow graph of program execution,
and inserts runtime instrumentation at each call site to verify
that the transition is safe.

• Sets of expected call targets are constructed from the set of all
possible call targets in the program, unique identifiers are
assigned to each set, and the instrumentation checks whether
the current call target is a member of the expected call target set.

• If this check succeeds, then the original call is allowed to
proceed, otherwise a failure handler is executed, which typically
terminates the program.

Developers
Wasm Security

42

• Control-flow integrity

• In WebAssembly, the execution semantics implicitly guarantee
the safety of (1) through usage of explicit function section
indexes, and (3) through a protected call stack. Additionally,
the type signature of indirect function calls is already checked
at runtime, effectively implementing coarse-grained type-
based control-flow integrity for (2). All of this is achieved
without explicit runtime instrumentation in the module.

• However, as discussed previously, this protection does not
prevent code reuse attacks with function-level granularity
against indirect calls.

Developers
Wasm Security

43

• Control-flow integrity

• Clang/LLVM -fsanitize=cfgi

• better defend against code reuse attacks that leverage indirect
function calls (2)

• enhances the built-in function signature checks by operating at the
C/C++ type level, which is semantically richer that the WebAssembly
type level, which consists of only four value types.

• Currently, enabling this feature has a small performance cost for each
indirect call, because an integer range check is used to verify that the
target index is trusted, but this will be eliminated in the future by
leveraging built-in support for multiple indirect tables with
homogeneous type in WebAssembly.

Developers
Wasm Security

44

• Frontend revolution: https://github.com/ManzDev/frontend-evolution

• State of JS: https://2019.stateofjs.com/overview/

• Creating and working with WebAssembly modules: https://hacks.mozilla.org/2017/02/
creating-and-working-with-webassembly-modules/

• https://github.com/mbasso/awesome-wasm

• Bringing the Web up to Speed with WebAssembly: https://people.mpi-sws.org/
~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,
%20Wagner,%20Zakai,%20Bastien,%20Holman%20-
%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pd
f

• Awesome WebAssembly Languages: https://github.com/appcypher/awesome-wasm-
langs

• Introduction to WebAssembly: https://rsms.me/wasm-intro

• WebAssembly Out of Bounds Trap Handling: https://docs.google.com/document/d/
17y4kxuHFrVxAiuCP_FFtFA2HP5sNPsCD10KEx17Hz6M/edit#

Reference

45

https://github.com/ManzDev/frontend-evolution
https://2019.stateofjs.com/overview/
https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/
https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/
https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/
https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/
https://github.com/mbasso/awesome-wasm
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://rsms.me/wasm-intro
https://docs.google.com/document/d/17y4kxuHFrVxAiuCP_FFtFA2HP5sNPsCD10KEx17Hz6M/edit#
https://docs.google.com/document/d/17y4kxuHFrVxAiuCP_FFtFA2HP5sNPsCD10KEx17Hz6M/edit#
https://docs.google.com/document/d/17y4kxuHFrVxAiuCP_FFtFA2HP5sNPsCD10KEx17Hz6M/edit#

