WebAssembly

history, internals, security and more

Mingshen Sun, April 16, 2020

Background

History all starts from the Web

e Text

* HTML

* Flash, ActionScript, Adobe Air, Silverlight, Java, ActiveX,
JavaScript

Background

History all starts from the Web

e Text

* HTML

* Flash, Actiongcript, Adobe Air, Silverlight, Java, ActiveX,
JavaScri

Background

JavaScript engine

* SpiderMonkey

« V8
 WebKit/JavaScriptCore
« Chakra

Background

JavaScript is ...

sole | Search Emulz undefined==false = let objOne

null==false . undefined
undefined==0 let objTwo []
null==0 c undefined
undefined=="" objOne == objTwo
)= = false
null s let arr = [1, 2, 3, 4]
false undefined

null e it let arrDup = [...arr]

null==undefined .
=k St undefined

) < null console. log(arrDup)
false > (4) [11 21 31 4]

> FHI undefined

arr == arrDup
false

objOne === objTwo
false

arr === arrDup
false

Background

JavaScript is confusing.

Types the same?

Both null or undefined?

true string== number?

e

/boolean == anything
object == string or number?

undefined -> NaN / \
null =>10
true -> 1 .toString()

false -> 0 .valueOf()
string -> # || NaN 3

v =

https://stackoverflow.com/questions/359494/which-equals-operator-vs-should-be-used-in-javascript-comparisons
6

Background

TypeScript

JavaScript that scales.

TypeScript is a typed superset of

JavaScript that compiles to plain
JavaScript.

TS

TypeScript

- types
- annotations

ES6

- classes
- modules

ES5

Background

asm.js

* asm.js is a subset of JavaScript

 allow other languages such as C to be run as web applications
while maintaining performance characteristics considerably
better than standard JavaScript,

https://johnresig.com/blog/asmjs-javascript-compile-target/

B Firefox |l Chrome | Firefox+asm.js Native

C/C++ Code Asm.js C.ompl-latufm &
Execution Pipeline

N\
[C|ang } skinning ;

\\ LLVM Bytecode

[Emscripten J zlib ?

. Asm.s
[|S Engine] . e
. WebGL
0 2 4 6 8 10 12 14 16 18 20
S BT Run time normalized to Native (clang -O2), lower values are better

9

Introduction

WebAssembly to save the world?

 WebAssembly (abbreviated Wasm) is a safe, portable, low-level
code format designed for efficient execution and compact
representation.

low-level efficient compact
safe portable : .
code format execution representation

10

Introduction
Where does WebAssembly Fit?

front-end back-end

N L

CHtt — IR

S T

Rust

https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/

11

Introduction
Where does WebAssembly Fit?

\‘* //"x86

C++ —— IR — wasm

N\
/ ARM
Rust

https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/

12

wat/wasm

Binary representation (.wasm)

" wat2wasm demo

WebAssembly has a text format and a binary format. This demo converts from the text format to the binary format.

Enter WebAssembly text in the textarea on the left. The right side will either show an error, or will show a log with a description of the generated binary file.

WAT example: simple & Download BUILD LOG
(module 0000000: 0061 736d ; WASM_BINARY MAGIC
(func $addTwo (param i32 i32) (result i32) 0000004: 0100 0000 ; WASM BINARY VERSION
get_local 0 ; section "Type" (1)
get_local 1 0000008: 01 ; section code
i32.add) 0000009: 00 ; section size (guess)
(export "addTwo" (func $addTwo))) 000000a: 01 ; num types
i type 0
000000b: 60 ; func
000000c: 02 ; num params
000000d: 7f ; 132
000000e: 7f ; 132
' 000000f: 01 ; num results
. 0000010: 7f ; i32
0000009: 07 ; FIXUP section size
; section "Function" (3)
0000011: 03 ; section code
. 0000012: 00 ; section size (guess)
Textual representation (.wat) 0000013: 01
0000014: 00 ; function 0 signature index
0000012: 02 ; FIXUP section size
; section "Export" (7)
0000015: 07 ; section code
0000016: 00 : section size (auess)
JS JS LOG
const wasmInstance = 0
new WebAssembly.Instance(wasmModule, {}); 2
const { addTwo } = wasmInstance.exports; 4
for (let i = 0; i < 10; i++) { 6
console.log(addTwo(i, i)); 8

JavaScript APIs

WebAssembly.compile(new Uint8Array (
'00 61 73 6d 0Od 00 00 00 01 09 02 60 00 00 60 01
7f 01 7f 23 03 02 90 91 ©5 04 01 00 80 01 07 07
Q1 03 66 6f 6f 00 91 98 01 00 Pa 3a 02 02 00 Ob
35 91 01 7f 20 00 41 94 6c 21 01 93 40 01 01 01
Ob 93 7f 41 01 Ob 20 91 41 ed 00 6¢c 41 cd 02 20
01 1b 21 91 41 00 20 91 36 02 00 41 00 21 01 41
P90 28 02 00 Of Ob Ob Pe 01 00 41 00 ©Ob 08 00 00
90 00 2c 00 00 00 .split(/[\s\r\nl+/g).map(v => parselInt(v, 16))
)).then(mod => 4§
let m = new WebAssembly.Instance(mod)
console.log('foo(1) =>', m.exports.foo(1))
console.log('foo(2) =>', m.exports.foo(2))
console.log('foo(3) =>', m.exports.foo(3))

£)

14

; function body 0
J0000024: 00 ; func body size (guess)

wat/wasm o o e
1 0000026: 20 ; local.get

C++11 -Os

int add(Cint a, int b) {
a + b;
ks

v Console

0000027: 00 ; local index
Il 0000028: 20 ; local.get
10000029: 01 ; local index
1 000002a: 6a ; i32.add
000002b: 0b ; end
0000024: 07 ; FIXUP func body size
1 0000022: 09 ; FIXUP section size

S-expression [

(module wasm-function[0]:
(table @ anyfunc) rsp,
(memory $0 1) ecx, esi
(export "memory" (memory $0)) eax, ecx
(export "_Z3addii" (func $_Z3addii)) eax, edi
(func $_Z3addii (; @ ;) (param $0 i32) (param $1 i32)

(result i32) rsp,
(i32.add
typed (get_local $1)
(get_local $0)
D)
)
)

stack machine, not an AST, or a register- or SSA-
based bytecode

Why? https://github.com/WebAssembly/design/
blob/master/Rationale.md#why-a-stack-machine

https://mbebenita.github.io/WasmExplorer/

https://github.com/WebAssembly/design/blob/master/Rationale.md#why-a-stack-machine
https://github.com/WebAssembly/design/blob/master/Rationale.md#why-a-stack-machine

Wasm

Anatomy of a WebAssembly program

module "example1”

version 1

type section start section
#0 (i32,132) — (i32) function #0
#1 ()= 0

code section

import section

i32.const 2
#0 “half” from “example2” of type 0 #0 i32.load 2 0 O
call 1
function section load local O
#1 load_local 1
type 1 i32.mul
#2 type O

, data section
export section

"double” of type 0 Ox5 Ox0 OxO0 OxO0

16

Wasm

Anatomy of a WebAssembly program

module “"example1”

version 1

type section start section

#0
#1

Types

. . WebAssembly has the following value types:
Import section

#0 “half” 1t o §32 : 32-bit integer
e 164 : 64-bit integer
o 32 :32-bit floating point
o T64

function section

#1

#2

: 64-bit floating point

. data section
export section

"double” of type 0 Ox5 Ox0 OxO0 OxO0

17

Wasm 1‘ A module contains the following sections:

Anatomy o - """ |

e export !
module “example1” o start
version 1 o global
type section e Memaory
#0 iy e data
#1 | . table
e elements

Import section function and code

#0 “half” fror| |
- A module also defines several index spaces which arg

function section section fields in the module:

#1
#2

e the function index space
o the global index space

: e the linear memory index space
export section

doublel © the table index space

18

Wasm Stack Machine

{7:(block % 0 ? block

1 call %__5/} call

2 °get_local[0]

> 7132 . add

4% <3 pget_local[1]
i32.mul
% 4 }i32.mu1

2 get_local[9]
%5 }i32.const[3]

3
t_1 1[1
; e) {65 132.add
i32.const[3]

%'7% end

Abstract Syntax Tree Postorder Encoding

19

Wasm Memory Model

Linear memory mordel

* Memory is linear

* memory-page size: 64KiB

Memory being “linear” means that there’s no random allocator
operators available — all memory addresses used in a module’s code
are expressed in terms of byte offsets from the beginning of a memory
segment.

WASM being a low-level format, this makes a lot of sense. It’s up to the
higher-level language that targets WASM to provide memory
management on top of this linear memory space, if needed.

20

Wasm Memory Model

Load/Store

i32.const 3 address-operand = 3
164.const 1234 value

164.storel6 1 3 alignment = 1 = 16-bit, offset-immedi

: I : : |
00 || 0o [| 00 || 0o [o0 || 00 00 || oo [{ 00 || 0 |
' I ' ' I
o 1 .2 314 5.6 7,8 910 11
f ! ; : !
16-bit 32-bit

i64.store32 2 3 // align = 2 = 32-bit, offset =

10 11

? i § ?
00 || 0o || oo || 2o [0o || 0o 00 || 00
] | ' '
‘ | 6 7|8 9
1 I '

Z 5 \
|\ . 7

21

Wasm Memory Model

Load/Store

00 || 2o || 00 || 00 || 00

00 || 00 [| @0 || 00 || 0o || 00 [| 00 || o

12 13114 15 | 16

The effective address is the offset in bytes measured from the beginning of the memory. The
effective address is the sum of the address operand and the offset immediate.

effective-address = address-operand + offset-immediate

https://rsms.me/wasm-intro

22

https://rsms.me/wasm-intro

WASI

a system interface for WebAssembly to run outside the web

 POSIX (The Portable Operating System Interface)
e Glibc, musl libc

« MSVC

* CloudABI

 Android

23

WASI

a system interface for WebAssembly to run outside the web

 POSIX (The Portable Operating System Interface)

Capability-based security means that

Jjl processes can only perform actions CloudABI is what you get if you take
that have no global impact. Processes POSIX, add capability-based security,
cannot open files by their absolute and remove everything that's

M path, cannot open network incompatible with that. The result is a

connections, and cannot observe minimal ABI consisting of only 49
global system state such as the syscalls.
process table.

24

For example, instead of a typical open
WASI API system call, WASI provides an openat-

like system call, requiring the calling

process to have a file descriptor for a

directory that contains the file,
representing the capability to open files
within that directory.

./ User Application

‘/MUSL libc “top half”

/ ™
‘ libpreopen = \WASI libc

“System call” wrappers

WASI AP ,__JI 1 % }

3 LY ‘-_-
| \\\ T—
' ‘-‘--‘—_
Ly . W — I
—— — ~ — ~ P =,
. . -~

N\
/

g
' Host

\ S “\ Or(
. Application '-

—
. - - — - -

25

Example
Hello, World!

fn main() {
println!("Hello, world!");

$ rustup target add wasm32-wasi

$ rustc hello.rs ——target wasm32-wasi
$ wasmtime hello.wasm

Hello, world!

26

Example
Hello, World

rustc execute
hello.rs hello.wasm wastime
compile

27

Example
Hello, World

rustc execute

hello.wasm

hello.rs

wastime

compile

Rust
standard

println!

library

libc
(binding) fd write WASI API

28

Example
Hello, World! |

fd_write(fd: fd, iovs: ciovec_array) -> (errno, size)

Write to a file descriptor. Note: This is similar to writev in POSIX.

Params

o fd: fd '

e iovs: ciovec_array List of scatter/gather vectors from which to retrieve data.

|
(module i
(type $t0 (func)) |
(type $t1 (func (param i32))) Results |
(type $t2 (func (param 132) (result i64)))
(type $t3 (func (param 132 i32) (result i32))) ® error: errno
(type $t4 (func (param 132 i32 132 i32)))
Eggg ::2 Eiszz EEZ;Z: 33 53)22))) | e nwritten : size The number of bytes written.
(type $t7 (func (param i32) (result i32))) ; R -
(type $t8 (func (param i32 i32 i32) (result i32)))
(type $t9 (func (param i32 i32 i32 i32) (result i32)))
(type $t10 (func (result 132)))
(type $t11 (func (param i32 i32 i32 i32 i32)))
(type $t12 (func (param i32 i32 i32 i32 i32) (result i32)))
(type $t13 (func (param i32 i32 i32 i32 i32 i32) (result i32)))
(type $t14 (func (param i64 i32 i32) (result i32)))
(import "wasi_snapshot_previewl" "proc_exit" (func $__wasi_proc_exit (type $t1)))
(import "wasi_snapshot_previewl" "fd_write" (func $_ZN4wasil3lib_generated22wasi_snapshot_previewl8fd_writel7h647699597ede499dE (type $t9)))
(import "wasi_snapshot_previewl" "fd_prestat_get" (func $__wasi_fd_prestat_get (type $t3)))
(import "wasi_snapshot_previewl" "fd_prestat_dir_name" (func $__wasi_fd_prestat_dir_name (type $t8)))
(import "wasi_snapshot_previewl" "environ_sizes_get" (func $__wasi_environ_sizes_get (type $t3)))
(import "wasi_snapshot_previewl" "environ_get" (func $__wasi_environ_get (type $t3)))
(func $__wasm_call_ctors (type $t0)
(call $__wasilibc_populate_environ)
(call $__wasilibc_populate_libpreopen))

29

Example
Hello, World

rustc execute

wastime

hello.wasm

hello.rs

!

Rust
standard
library

libc
(binding) fd write WASI API

30

compile

println!

Where is the actual

Implementation of fd_write
at wastime WASI runtime?

Example
Hello, World

fn fd_write(&self, fd: types::Fd, ciovs: &types::CiovecArray<'_>) —-> Result<types::Size> {

let mut bc = GuestBorrows::new();
let mut slices = Vec::new();
bc.borrow _slice(&ciovs)?;
for ciov_ptr in ciovs.iter() {

let ciov_ptr = ciov_ptr?;

let ciov: types::Ciovec = ciov_ptr.read()?;

let slice = unsafe {

let buf = ciov.buf.as_array(ciov.buf_len);

let raw = buf.as_raw(&mut bc)?;

&xraw
};

slices.push(io::IoSlice::new(slice));

let required_rights = EntryRights::from_base(types::Rights::FD_WRITE);
let entry = self.get_entry(fd)?;
let isatty = entry.isatty();

let host_nwritten = entry OsHandle
.as_handle(&required_rights)?

.write_vectored(&slices, isatty)?
.try_into()?;
Ok(host_nwritten)

} 10: :stdout() ;

/crates/wasi-common/src/snapshots/wasi_snapshot_preview1.rs

XXX to/in Wasm

e Rust: rustc

¢ C/C++

e Emscripten - an LLVM-to-JavaScript/Webassembly compiler. It takes LLVM bitcode - which can be generated from
C/C++, using llvm-gcc (DragonEgg) or clang, or any other language that can be converted into LLVM - and compiles that
into JavaScript or wasm.

e Cheerp - an open-source, commercial C/C++ compiler for Web applications. It can compile virtually any C/C++ code (up
to C++14) to WebAssembly, JavaScript, asm.js or a combination thereof.

* Python

e Pyodide - a port of Python to WebAssembly that includes the core packages of the scientific Python stack (Numpy,
Pandas, matplotlib). Objects transparently convert and share between Python and Javascript.

e MicroPython - a lean and efficient Python implementation for microcontrollers and constrained systems.

e Batavia - Batavia is an implementation of the Python virtual machine, written in JavaScript. With Batavia, you can run
Python bytecode in your browser.

32

Wasm Runtime

e V8: https://chromium.googlesource.com/v8/v8/+/refs/heads/
master/src/wasm/

* Wastime: https://qgithub.com/bytecodealliance/wasmtime

* Lucet: https://github.com/bytecodealliance/lucet

e wasm-micro-runtime: https://github.com/bytecodealliance/
wasm-micro-runtime

* Wasmer: https://github.com/wasmerio/wasmer

 Wasmi: https://github.com/paritytech/wasmi

33

https://chromium.googlesource.com/v8/v8/+/refs/heads/master/src/wasm/
https://chromium.googlesource.com/v8/v8/+/refs/heads/master/src/wasm/
https://chromium.googlesource.com/v8/v8/+/refs/heads/master/src/wasm/
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/lucet
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/wasmerio/wasmer
https://github.com/paritytech/wasmi

Security

* WebAssembly design doc: https://webassembly.org/docs/
security/

e Users

* Protect users from buggy or malicious modules.

* Developers

* Provide developers with useful primitives and mitigations for

developing safe applications, within the constraints of above
one.

34

https://webassembly.org/docs/security/
https://webassembly.org/docs/security/
https://webassembly.org/docs/security/
https://webassembly.org/docs/security/

Wasm Security

Users

 Sandbox (with fault isolation)
* Deterministic execution (with limited exceptions)

 Each module is subject to the security policies of its embedding:
same-origin policy or POSIX

35

Wasm Security

Developers

* Modules
» explicit function declaration allow CFIl enforcement

e code is immutable and not observable at runtime

'« Function calls must specify the index of a target that corresponds to a valid entry in the

|
\
|« Indirect function calls are subject to a type signature check at runtime; the type signature of the
selected indirect function must match the type signature specified at the call site.

function index space or table index space.

o A protected call stack that is invulnerable to buffer overflows in the module heap ensures safe
function returns.

e Branches must point to valid destinations within the enclosing function.

= D — — e

36

Wasm Security

Developers

* Varibles
* local variables: zero by default, protected call stack
* global variables: global index space

* unclear static scope (address-of op): separate user-
addressable stack linear memory, zero by default

* References to this memory are computed with infinite
precision to avoid wrapping and simplify bounds checking

37

Wasm Security

Developers

* Traps: terminate execution and signal abnormal behavior to the
execution environment

spe;:ifying an invalid index in any in;jex space,

e performing an indirect function call with a mismatched signature,

exceeding the maximum size of the protected call stack,

accessing out-of-bounds addresses in linear memory,

executing an illegal arithmetic operations (e.g. division or remainder by zero, signed division |
overflow, etc).

- = = =

38

Wasm Security

Developers

® Memory safety (overflows)

* Buffer overflows cannot affect local or global variables
stored in index space, they are fixed-size and addressed by

Index.

* Data stored in linear memory_can overwrite adjacent objects,
since bounds checking is performed at linear memory region
granularity and is not context-sensitive.

* However, the presence of control-flow integrity and protected
call stacks prevents direct code injection attacks. Thus,
common mitigations such as data execution prevention (DEP)
and stack smashing protection (SSP) are not needed.

39

Wasm Security

Developers

® Memory safety (use-after-free)

* the semantics of pointers have been eliminated for function
calls and variables with fixed static scope, allowing references
to invalid indexes in any index space to trigger a validation
error at load time, or at worst a trap at runtime.

* Accesses to linear memory are bounds-checked at the
region level, potentially resulting in a trap at runtime. These
memory region(s) are isolated from the internal memory of the

runtime, and are set to zero by default unless otherwise
initialized.

40

Wasm Security

Developers

e Memory safety (others)

e possible to hijack the control flow of a module using code reuse attacks
against indirect calls

 ROP attacks are not possible, because control-flow integrity ensures
that call targets are valid functions declared at load time.

e race conditions, such as time of check to time of use (TOCTOU)
vulnerabilities, are possible, since no execution or scheduling guarantees
are provided beyond in-order execution and atomic memory primitives

 side channel attacks

 In the future, additional protections may be provided by runtimes or the
toolchain, such as code diversification or memory randomization (ASLR), or
bounded pointers (“fat” pointers).

41

Wasm Security

Developers

e Control-flow integrity

* Runtime instrumentation: During compilation, the compiler
generates an expected control flow graph of program execution,
and inserts runtime instrumentation at each call site to verify
that the transition is safe.

» Sets of expected call targets are constructed from the set of all
possible call targets in the program, unigque identifiers are
assigned to each set, and the instrumentation checks whether
the current call target is a member of the expected call target set.

 If this check succeeds, then the original call is allowed to
proceed, otherwise a failure handler is executed, which typically
terminates the program.

42

WasmSecurity =

Developers 1. Direct function calls
| 2. Indirect function calls,

3. Returns.

e Control-flow integrity fﬁ;

* In WebAssembly, the execution semantics implicitly guarantee
the safety of (1) through usage of explicit function section
indexes, and (3) through a protected call stack. Additionally,
the type signature of indirect function calls is already checked
at runtime, effectively implementing coarse-grained type-
based control-flow integrity for (2). All of this is achieved
without explicit runtime instrumentation in the module.

* However, as discussed previously, this protection does not
prevent code reuse attacks with function-level granularity
against indirect calls.

43

WasmSecurity

Developers |

e Control-flow integrity _

1. Direct function calls

2. Indirect function calls,

3. Returns.

Clang/LLVM -fsanitize=cfgi

better defend against code reuse attacks that leverage indirect
function calls (2)

enhances the built-in function signature checks by operating at the
C/C++ type level, which is semantically richer that the WebAssembly
type level, which consists of only four value types.

Currently, enabling this feature has a small performance cost for each
indirect call, because an integer range check is used to verify that the
target index is trusted, but this will be eliminated in the future by
leveraging built-in support for multiple indirect tables with
homogeneous type in WebAssembly.

44

Reference

Frontend revolution: https://github.com/ManzDev/frontend-evolution

State of JS: https://2019.stateofjs.com/overview/

Creating and working with WebAssembly modules: https://hacks.mozilla.org/2017/02/
creating-and-working-with-webassembly-modules/

https://qgithub.com/mbasso/awesome-wasm

Bringing the Web up to Speed with WebAssembly: https://people.mpi-sws.org/
~rossberg/papers/Haas, % 20Rossberg,%20Schuff,%20Titzer,%20Gohman,
%20Wagner,%20Zakai,%20Bastien,%20Holman%20-

%20Bringing%20the %20Web%20up%20to%20Speed % 20with % 20WebAssembly.pd
.I:

Awesome WebAssembly Languages: https://github.com/appcypher/awesome-wasm-
langs

Introduction to WebAssembly: https://rsms.me/wasm-intro

WebAssembly Out of Bounds Trap Handling: https://docs.google.com/document/d/
17y4kxuHFrVxAIUCP FFtFA2HP5sNPsCD10KEx17Hz6M/edit#

45

https://github.com/ManzDev/frontend-evolution
https://2019.stateofjs.com/overview/
https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/
https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/
https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/
https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/
https://github.com/mbasso/awesome-wasm
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://rsms.me/wasm-intro
https://docs.google.com/document/d/17y4kxuHFrVxAiuCP_FFtFA2HP5sNPsCD10KEx17Hz6M/edit#
https://docs.google.com/document/d/17y4kxuHFrVxAiuCP_FFtFA2HP5sNPsCD10KEx17Hz6M/edit#
https://docs.google.com/document/d/17y4kxuHFrVxAiuCP_FFtFA2HP5sNPsCD10KEx17Hz6M/edit#

